Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\frac{7}{4}.\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{4242}+\frac{3333}{3030}\right)\)
A = \(\frac{7}{4}.\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)
A = \(\frac{7}{4}.33.\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)
A = \(\frac{7}{4}.33.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
A = \(\frac{7}{4}.33.\left(\frac{1}{3}-\frac{1}{7}\right)=\frac{7}{4}.33.\frac{4}{21}\)
=> A = \(\frac{1}{3}.33\)
=> A = 11
\(\frac{7}{4}\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{3333}{4242}\right)\)
\(=\frac{7}{4}\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)
\(=\frac{7}{4}\cdot33\cdot\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\)
\(=\frac{7}{4}\cdot33\cdot\left(\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}\right)\)
\(=\frac{7}{4}\cdot33\cdot\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(=\frac{7}{4}\cdot33\cdot\left(\frac{1}{3}-\frac{1}{7}\right)\)
\(=\frac{7}{4}\cdot33\cdot\frac{4}{21}\)
\(=\left(\frac{7}{4}\cdot\frac{4}{21}\right)\cdot33\)
\(=\frac{1}{3}\cdot33=11\)
32,2857 và 12,8 và -498814315,3 và 0,1 và 11
tổng = - 498814259,1
a, \(\frac{7}{4x}\left(\frac{33}{12}+\frac{3333}{2020}+\frac{333333}{303030}+\frac{33333333}{42424242}\right)=22\)
\(\frac{7}{4x}\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)=22\)
\(\frac{7}{4x}\left[33.\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\right]=22\)
\(\frac{7}{4x}\left[33.\left(\frac{35}{420}+\frac{21}{420}+\frac{14}{420}+\frac{10}{420}\right)\right]=22\)
\(\frac{7}{4x}\left[33.\frac{4}{21}\right]=22\)
\(\frac{7}{4x}.\frac{44}{7}\)=22
\(\frac{11}{x}=22\)
x=11:22
x=\(\frac{1}{2}\)
b,\(\left(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\right).x=1\)
Đặt A\(=\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)
Ta có :\(A=\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)
\(\Rightarrow4A=4.\left(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\right)\)
\(\Rightarrow4A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}=\frac{32}{64}+\frac{16}{64}+\frac{8}{64}+\frac{4}{64}+\frac{2}{64}+\frac{1}{64}\)
\(\Rightarrow4A=\frac{32+16+8+4+2+1}{64}=\frac{63}{64}\)
\(\Rightarrow A=\frac{63}{64}:4=\frac{63}{256}\)
\(\Rightarrow\frac{63}{256}.x=1\)
\(\Leftrightarrow x=1:\frac{63}{256}=\frac{256}{63}\)
\(\frac{3333}{4444}-\frac{121121}{363363}+\frac{131313}{151515}\)
\(=\frac{3}{4}-\frac{121}{363}+\frac{13}{15}\)
\(=\frac{3}{4}-\frac{1}{3}+\frac{13}{15}\)
\(=\frac{45}{60}-\frac{20}{60}+\frac{42}{60}\)
\(=\frac{45-20+42}{60}\)
\(=\frac{67}{60}\)
\(M=\frac{7}{4}\times\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{3333}{4242}+\frac{3333}{5656}\right)\)
\(M=\frac{7}{4}\times\left(\frac{11}{4}+\frac{33}{20}+\frac{11}{10}+\frac{11}{14}+\frac{33}{56}\right)\)
\(M=\frac{7}{4}\times\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}+\frac{33}{56}\right)\)
\(M=\frac{7}{4}\times\left(\frac{33}{3.4}+\frac{33}{4.5}+\frac{33}{5.6}+\frac{33}{6.7}+\frac{33}{7.8}\right)\)
\(M=\frac{7}{4}\times\left[33\cdot\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\right)\right]\)
\(M=\frac{7}{4}\times\left[33\times\left(\frac{1}{3}-\frac{1}{8}\right)\right]\)
\(M=\frac{7}{4}\times\left(33\times\frac{5}{24}\right)=\frac{7}{4}\times\frac{55}{8}=\frac{385}{32}\)