Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}\right)\cdot3\sqrt{6}\)
\(=2\sqrt{6}\cdot3\sqrt{6}-4\sqrt{3}\cdot3\sqrt{6}+5\sqrt{2}\cdot3\sqrt{6}\)
\(=36-36\sqrt{2}+30\sqrt{3}\)
Bài 20:
a) \(\sqrt{9-4\sqrt{5}}\cdot\sqrt{9+4\sqrt{5}}=\sqrt{81-80}=1\)
b) \(\left(2\sqrt{2}-6\right)\cdot\sqrt{11+6\sqrt{2}}=2\left(\sqrt{2}-3\right)\left(3+\sqrt{2}\right)\)
\(=2\left(2-9\right)=2\cdot\left(-7\right)=-14\)
c: \(\sqrt{2}\cdot\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\)
\(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\)
\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)
=2
d) \(\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{6}-\sqrt{2}\right)\left(2+\sqrt{3}\right)\)
\(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}-1\right)\left(2+\sqrt{3}\right)\)
\(=\left(4-2\sqrt{3}\right)\left(2+\sqrt{3}\right)\)
\(=8+4\sqrt{3}-4\sqrt{3}-6\)
=2
\(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}=\sqrt{3+2\sqrt{3}.\sqrt{2}+2}-\sqrt{3-2\sqrt{3}.\sqrt{2}+2}=\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}=2\sqrt{2}\)
Cho sửa phần mẫu số của câu trên thành \(\sqrt{6}+\sqrt{2}\)
\(\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{5-|2\sqrt{3}+1|}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{4+2\sqrt{3}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{\left(\sqrt{3}-1\right)^2}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+|\sqrt{3}-1|}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{2+\sqrt{3}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{\sqrt{2}.\sqrt{4+2\sqrt{3}}}{\sqrt{2}\left(\sqrt{3}+1\right)}\)
\(=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{3}+1}\)
\(=\frac{\sqrt{3}+1}{\sqrt{3}+1}=1\)
\(A=3\sqrt{2}+5\sqrt{8}-2\sqrt{50}\)
\(=3\sqrt{2}+10\sqrt{2}-10\sqrt{2}\)
\(=3\sqrt{2}\)
a) Ta có: \(\frac{6}{\sqrt{2}-\sqrt{3}+3}\)
\(=\frac{6\left(\sqrt{2}-\sqrt{3}-3\right)}{\left(\sqrt{2}-\sqrt{3}+3\right)\left(\sqrt{2}-\sqrt{3}-3\right)}\)
\(=\frac{6\left(\sqrt{2}-\sqrt{3}-3\right)}{5-2\sqrt{6}-9}\)
\(=\frac{6\left(\sqrt{2}-\sqrt{3}-3\right)}{-4-2\sqrt{6}}\)
\(=\frac{6\left(\sqrt{2}-\sqrt{3}-3\right)}{-2\sqrt{2}\left(\sqrt{2}-\sqrt{3}\right)}\)
\(=\frac{3\left(\sqrt{2}-\sqrt{3}-3\right)\left(\sqrt{2}+\sqrt{3}\right)}{-\sqrt{2}\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}\)
\(=\frac{3\sqrt{2}\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}-3\right)}{2}\)
b) Ta có: \(\left(\frac{4}{\sqrt{5}+1}-\frac{4}{\sqrt{5}-1}\right):\sqrt{3+2\sqrt{2}}\)
\(=\left(\frac{4\left(\sqrt{5}-1\right)}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}-\frac{4\left(\sqrt{5}+1\right)}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}\right):\sqrt{2+2\cdot\sqrt{2}\cdot1+1}\)
\(=\left(\frac{4\left(\sqrt{5}-1\right)}{4}-\frac{4\left(\sqrt{5}+1\right)}{4}\right):\sqrt{\left(\sqrt{2}+1\right)^2}\)
\(=\left(\sqrt{5}-1-\sqrt{5}-1\right):\left|\sqrt{2}+1\right|\)
\(=-\frac{2}{\sqrt{2}+1}\)(Vì \(\sqrt{2}+1>0\))
\(=-\frac{2\left(\sqrt{2}-1\right)}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}\)
\(=-2\left(\sqrt{2}-1\right)\)
\(=-2\sqrt{2}+2\)
a) Ta có: \(\left(\sqrt{14}+\sqrt{6}\right)\left(\sqrt{5}-\sqrt{21}\right)\)
\(=\sqrt{70}-7\sqrt{6}+\sqrt{30}-3\sqrt{14}\)
1) \(\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
\(=\sqrt{2^2+2\cdot2\cdot\sqrt{5}+\left(\sqrt{5}\right)^2}-\sqrt{2^2-2\cdot2\cdot\sqrt{5}+\left(\sqrt{5}\right)^2}\)
\(=\sqrt{\left(2+\sqrt{5}\right)^2}-\sqrt{\left(2-\sqrt{5}\right)^2}\)
\(=\left|2+\sqrt{5}\right|-\left|2-\sqrt{5}\right|\)
\(=2+\sqrt{5}+2-\sqrt{5}\)
\(=4\)
2) \(\sqrt{12-6\sqrt{3}}+\sqrt{12+6\sqrt{3}}\)
\(=\sqrt{3^2-2\cdot3\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}+\sqrt{3^2+2\cdot3\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}\)
\(=\sqrt{\left(3-\sqrt{3}\right)^2}+\sqrt{\left(3+\sqrt{3}\right)^2}\)
\(=\left|3-\sqrt{3}\right|+\left|3+\sqrt{3}\right|\)
\(=3-\sqrt{3}+3+\sqrt{3}\)
\(=6\)