Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+2+2^2+2^3+...+2^{2021}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{2022}\)
\(\Rightarrow A=2A-A=2+2^2+...+2^{2022}-1-2-2^2-...-2^{2021}=2^{2022}-1>2^{2021}-1=N\)
\(a=1+2+2^2+...+2^{2021}\\ \Rightarrow2a=2+2^2+2^3+...+2^{2022}\\ \Rightarrow2a-a=\left(2+2^2+2^3+...+2^{2022}\right)-\left(1+2+2^2+...+2^{2021}\right)\\ \Rightarrow a=2^{2022}-1>2^{2021}-1=n\)
Ta có:
\(A=\dfrac{2010^{2011}+1}{2010^{2012}+1}\)
\(A< \dfrac{2010^{2011}+1+2009}{2010^{2012}+1+2009}\)
\(A< \dfrac{2010^{2011}+2010}{2010^{2012}+2010}\)
\(A< \dfrac{2010\left(2010^{2010}+1\right)}{2010\left(2010^{2011}+1\right)}\)
\(A< \dfrac{2010^{2010}+1}{2010^{2011}+1}\)
Mà \(B=\dfrac{2010^{2010}+1}{2010^{2011}+1}\)
\(\Rightarrow A< B\)
\(\frac{2007}{2008}>\frac{2007}{2008+2009}\\ \frac{2008}{2009}>\frac{2008}{2008+2009}\\ \Rightarrow\frac{2007}{2008}+\frac{2008}{2009}>\frac{2007}{2008+2009}+\frac{2008}{2008+2009}\\ \Rightarrow\frac{2007}{2008}+\frac{2008}{2009}>\frac{2007+2008}{2008+2009}\\ \Rightarrow M>N\)
3205 + 283203 + 2 = 286410 M
3204 + 283202 + 13204 + 283202 + 1 = 512813
Vay M < N