K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(M=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right).2.3.4...98\)
\(\text{Chứng tỏ M chia hết cho }99\)

\(M=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right).2.3.4...98\)

\(=1+\left(\frac{1}{2}.2\right)+\left(\frac{1}{3}.3\right)+...+\left(\frac{1}{98}.98\right)\)

\(=1+1+1+...+1\)

\(\Rightarrow M=99⋮99\)

\(\Rightarrow M⋮99\)

13 tháng 3 2016

Tính một lúc ta được M=1+2+3+...+98

\(M=\left(1+98\right)+\left(2+97\right)+...\left(49+50\right)\)

\(M=99+99+99+...+99\)

Vậy M chia hết cho 99

Ai tích mk mk tích lại cho

Tìm 2M rồi trừ cho M sẽ ra kết quả

Mình giải cho đợi tí

AH
Akai Haruma
Giáo viên
13 tháng 5 2023

Đề lỗi công thức khá khó đọc. Bạn xem lại.

7 tháng 5 2018

tao có:

1/2.3.4.....98.M=(1+1/98)+(1/2+1/97)+...+(1/49+1/50)

1/2.3.4.....98.M=99/1.98+99/2.97+...+99/49.50

gọi các thừa số phụ cua tử m là:n1,n2,...n49

suy ra M=99.(n1+n2+...+n49).2.3.....98/2.3.....98

M=99.(n1+n2+...+n49) chia het cho 99 suy ra đéo phải chứng minh

29 tháng 4 2015

Ta có : M= [(1+1/98)+(1/2+1/97)+...+(1/49+1/50)].2.3.4...98

             M=(99/1.98+99/2.97+...+99/49.50).2.3.4...98

             M=99(1/1.98+1/2.97+...+1/49.50).2.3.4...98

             M=99(k1+k2+...+k49/1.2.3.4...97.98).2.3.4...98

             M=99(k1+k2+...+k49)

Vậy M chia hết cho 99

27 tháng 4 2015

TRONG PHÉP NHÂN CÓ 3X33=99=>M LUÔN CHIA HẾT CHO 99

31 tháng 3 2017

bạn vào goole mà tra đảm bảo sẽ ra kết quả và cách làm

10 tháng 5 2017

Ta có: \(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\)

\(=\left(1+\frac{1}{98}\right)+\left(\frac{1}{2}+\frac{1}{97}\right)+\left(\frac{1}{3}+\frac{1}{96}\right)+...+\left(\frac{1}{49}+\frac{1}{50}\right)\)

\(=\frac{99}{1.98}+\frac{99}{2.97}+\frac{99}{3.96}+...+\frac{99}{49.50}\)

\(=99\left(\frac{1}{1.98}+\frac{1}{2.97}+\frac{1}{3.96}+...+\frac{1}{49.50}\right)\)

\(\Rightarrow A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right).2.3.4....98\)

\(=99\left(\frac{1}{1.98}+\frac{1}{2.97}+\frac{1}{3.96}+...+\frac{1}{49.50}\right).2.3.4....98\)chia hết cho 99 (đpcm)