K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(N=\dfrac{xy\left(x^{\dfrac{1}{3}}+y^{\dfrac{1}{3}}\right)}{x^{\dfrac{1}{3}}+y^{\dfrac{1}{3}}}=xy\)

HQ
Hà Quang Minh
Giáo viên
23 tháng 8 2023

\(A=\dfrac{x^{\dfrac{5}{4}}y+xy^{\dfrac{5}{4}}}{\sqrt[4]{x}+\sqrt[4]{y}}\\ =\dfrac{xy\left(x^{\dfrac{1}{4}}+y^{\dfrac{1}{4}}\right)}{x^{\dfrac{1}{4}}+y^{\dfrac{1}{4}}}\\ =xy\)

\(B=\left(\sqrt[7]{\dfrac{x}{y}\sqrt[5]{\dfrac{y}{x}}}\right)^{\dfrac{35}{4}}\\= \left(\sqrt[7]{\dfrac{x}{y}\cdot\left(\dfrac{x}{y}\right)^{-\dfrac{1}{5}}}\right)^{\dfrac{35}{4}}\\ =\left(\sqrt[7]{\left(\dfrac{x}{y}\right)^{\dfrac{4}{5}}}\right)^{\dfrac{35}{4}}\\ =\left[\left(\dfrac{x}{y}\right)^{\dfrac{4}{35}}\right]^{\dfrac{35}{4}}\\ =\left(\dfrac{x}{y}\right)^{\dfrac{4}{35}\cdot\dfrac{35}{4}}\\ =\left(\dfrac{x}{y}\right)^1\\ =\dfrac{x}{y}\)

D
datcoder
CTVVIP
14 tháng 8 2023

a) \(\ln\left(\sqrt{5}+2\right)+\ln\left(\sqrt{5}-2\right)=ln\left(\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)\right)=\ln\left(\left(\sqrt{5}\right)^2-2^2\right)=ln\left(5-4\right)=\ln1=\ln e^0=1\)

b) \(\log400-\log4=\log\dfrac{400}{4}=\log100=\log10^{10}=10.\log10=10.1=10\)

c) \(\log_48+\log_412+\log_4\dfrac{32}{2}=\log_4\left(8.12.\dfrac{32}{2}\right)=\log_4\left(1024\right)=\log_44^5=5.\log_44=5.1=5\)

a: \(=ln_2\left[\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)\right]=ln1=0\)

b: \(=log\left(\dfrac{400}{4}\right)=log\left(100\right)=10\)

c: \(=log_4\left(8\cdot12\cdot\dfrac{32}{3}\right)=log_4\left(32\cdot32\right)=5\)

\(=\sqrt{x\sqrt{x^{1+\dfrac{1}{2}}}}:x^{\dfrac{5}{8}}\)

\(=\sqrt{x\cdot x^{\dfrac{1}{2}\cdot\dfrac{3}{2}}}:x^{\dfrac{5}{8}}\)

\(=\sqrt{x^{1+\dfrac{3}{4}}}:x^{\dfrac{5}{8}}\)

\(=x^{\dfrac{1}{2}\cdot\dfrac{7}{4}}:x^{\dfrac{5}{8}}=x^{\dfrac{7}{8}-\dfrac{5}{8}}=x^{\dfrac{1}{4}}=\sqrt[4]{x}\)

=>A

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

\({\left[ {{{\left( {\frac{1}{3}} \right)}^2}} \right]^{\frac{1}{4}}}.{\left( {\sqrt 3 } \right)^5} = {\left( {\frac{1}{3}} \right)^{2.\frac{1}{4}}}.{\left( {{3^{\frac{1}{2}}}} \right)^5} = {\left( {{3^{ - 1}}} \right)^{\frac{1}{2}}}{.3^{\frac{1}{2}.5}} = {3^{ - \frac{1}{2}}}{.3^{\frac{5}{2}}} = {3^{ - \frac{1}{2} + \frac{5}{2}}} = {3^2} = 9\)

Chọn D.

a: \(A=\dfrac{x^{\dfrac{1}{3}}\cdot y^{\dfrac{1}{2}}+y^{\dfrac{1}{3}}\cdot x^{\dfrac{1}{2}}}{x^{\dfrac{1}{6}}+y^{\dfrac{1}{6}}}=\dfrac{x^{\dfrac{1}{3}}\cdot y^{\dfrac{1}{3}}\left(x^{\dfrac{1}{6}}+y^{\dfrac{1}{6}}\right)}{x^{\dfrac{1}{6}}+y^{\dfrac{1}{6}}}=x^{\dfrac{1}{3}}\cdot y^{\dfrac{1}{3}}=\left(xy\right)^{\dfrac{1}{3}}\)

b: \(B=\dfrac{x^{3+\sqrt{3}}}{y^2}\cdot\dfrac{x^{-\sqrt{3}-1}}{y^{-2}}=\dfrac{x^{3+\sqrt{3}-\sqrt{3}-1}}{y^{2-2}}=x^2\)

18 tháng 8 2023

a) \(log_29\cdot log_34=4\)

b) \(log_{25}\cdot\dfrac{1}{\sqrt{5}}=-\dfrac{1}{4}\)

c) \(log_23\cdot log_9\sqrt{5}\cdot log_54=\dfrac{1}{2}\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 8 2023

a, Điều kiện: \(2^x\ne3\Rightarrow x\ne log_23\)

Vậy D = R \ \(log_23\)

b, Điều kiện: \(25-5^x\ge0\Rightarrow5^x\le5^2\Rightarrow x\le2\)

Vậy D = \((-\infty;2]\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 8 2023

c, Điều kiện: \(\left\{{}\begin{matrix}x>0\\lnx\ne1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>0\\x\ne e\end{matrix}\right.\)

Vậy D = \(\left(0;+\infty\right)\backslash\left\{e\right\}\)

d, Điều kiện: \(\left\{{}\begin{matrix}x>0\\1-log_3x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>0\\log_3x\le1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>0\\x\le3\end{matrix}\right.\Rightarrow0< x\le3\)

Vậy D = \((0;3]\)

a: \(=3\cdot3^{\dfrac{1}{2}}\cdot3^{\dfrac{1}{.4}}\cdot3^{\dfrac{1}{8}}=3^{1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}}=3^{\dfrac{15}{16}}\)

b: \(=\sqrt{a\cdot\sqrt{a\cdot a^{\dfrac{1}{2}}}}\)

\(=\sqrt{a\cdot\sqrt{a^{\dfrac{3}{2}}}}=\sqrt{a\cdot a^{\dfrac{3}{4}}}=\sqrt{a^{\dfrac{7}{4}}}=a^{\dfrac{7}{4}\cdot\dfrac{1.}{2}}=a^{\dfrac{7}{8}}\)

c: \(=\dfrac{a^{\dfrac{1}{2}}\cdot a^{\dfrac{1}{3}}\cdot a^{\dfrac{1}{4}}}{\left(a^{\dfrac{1}{5}}\right)^3\cdot a^{\dfrac{2}{5}}}=\dfrac{a^{\dfrac{13}{12}}}{a}=a^{\dfrac{1}{12}}\)