Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Danh sách những môn thi đấu mà cả hai trường đã đề xuất là: Bóng bàn, Bóng đá, Bóng rổ, Cầu lông.
bài;1 món thịt kho
hà rất muốn ăn món thịt kho tàu do mẹ nấu.
khi có thời gian, hà và mẹ đi chợ mua ít thịt về
nấu
bài;2;tìm đoạn van vừa đọc.
khi có thời gian,hà và mẹ đi đâu
A,đi chợ Bđi về quê C đi chơi
Nhân dịp 26/3, trường Cao Nhuyên tổ chức thi đấu các nội dung cờ vua, cờ tướng, bóng bàn. Lớp 10A có 21 học sinh trong đó có 15 bạn tham gia thi đấu cờ vua, 7 bạn tham gia thi đấu cờ tướng và 12 em tham gia thi đấu bóng bàn, ko có em nào đăng kí thi đấu cả 3 nội dung. Biết các bạn có họ lực môn Toán loại yếu kém ko tham gia thi đấu (môn toán dc xếp theo 4 mức: giỏi, khá, trung bình, yếu -kém)... Đọc tiếp
Nhân dịp 26/3, trường Cao Nhuyên tổ chức thi đấu các nội dung cờ vua, cờ tướng, bóng bàn. Lớp 10A có 21 học sinh trong đó có 15 bạn tham gia thi đấu cờ vua, 7 bạn tham gia thi đấu cờ tướng và 12 em tham gia thi đấu bóng bàn, ko có em nào đăng kí thi đấu cả 3 nội dung. Biết các bạn có họ lực môn Toán loại yếu kém ko tham gia thi đấu (môn toán dc xếp theo 4 mức: giỏi, khá, trung bình, yếu -kém) Các bạn được xếp loại giỏi môn toán, nếu dăng kí thì chỉ tham gia thi đúng 1 nội dung. Hỏi có bao nhiêu em đạt loại giỏi về môn toán biết số học sinh xếp loại yếu-kém môn toán là 4 em
Các đội bóng đấu vòng tròn hai lượt đi và lượt về. Khi đó việc xếp số trận đấu được chia làm 14 giai đoạn:
Đội 1 có đấu 13 trận với 13 đội còn lại;
Đội 2 có đấu 13 trận với 13 đội còn lại;
…( bạn tự viết nốt nhá )
Đội 14 có đấu 13 trận với 13 đội còn lại.
Vậy có tất cả 13 + 13 + 13 + … + 13 (có 14 số 13) = 13.14 = 182 trận đấu.
Học tốt !
copp
https://haylamdo.com/toan-10-ct/bai-7-trang-32-toan-lop-10-tap-2.jsp
Mỗi trận đấu gồm 2 đội từ 14 đội và trên sân nhà hay sân đối thủ, nên mỗi trận đấu là một cách chọn 2 đội và sắp xếp chúng. Do đó, mỗi trận đấu là một chỉnh hợp chập 2 của 14 phần tử. Vậy số trận đấu có thể xảy ra là:
\(A_{14}^2 = 14.13 = 182\) (trận)
\(\text{Gọi x là số học sinh biết chơi cả hai môn đá cầu và cầu lông. }\)
\(\text{Theo đề, ta có: }\)
\(\text{+Số học sinh chỉ biết chơi mỗi đá cầu là: }25-x\)
\(\text{+Số học sinh chỉ biết chơi mỗi cầu lông là: }20-x\)
\(\text{Vậy, số học sinh biết chơi cả hai môn đá cầu và cầu lông là:
}\)
\(25-x+20-x+x=36\Leftrightarrow x=9\left(HS\right)\)
Số học sinh biết chơi cả đá cầu và cầu lông là: \(25+20-36=9\left(hs\right)\)
Tham khảo:
Gọi \(x\) là số bạn tham gia thi đấu cả bóng đá và cầu lông.
Ta có: 16 bạn thi đấu bóng đá và 11 bạn thi đấu cầu lông
\( \Rightarrow \) Có \(16 - x\) bạn chỉ tham gia thi đấu bóng đá mà không thi đấu cầu lông.
Và có \(11 - x\) bạn chỉ tham gia thi đấu cầu lông mà không thi đấu bóng đá.
Ta có biểu đồ Ven như sau:
Tổng số bạn tham gia thi đấu bóng đá và cầu lông là: 16-x + x + 11-x = 24 => x=3.
Vậy lớp 10A có 3 bạn tham ggia thi đấu cả bóng đá và cầu lông.