K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 12 2018

Lời giải:

A là biến cố bệnh nhân ở tỉnh A

B là biến cố bệnh nhân ở tỉnh B

C là biến cố bệnh nhân ở tỉnh C

Q là biến cố bệnh nhân là giáo viên

Theo công thức xác suất đầy đủ:

\(P(Q)=P(A)P(Q|A)+P(B)P(Q|B)+P(C)P(Q|C)\)

\(=0,25.0,02+0,35.0,03+0,4.0,035=0,0295\)

b) Mình không hiểu đề mấy. Xét trong bệnh viện thì ai chả là bệnh nhân. Nếu xét số người không phải bệnh nhân thì không đủ cơ sở để tính.

26 tháng 11 2022

a: Ta có: ΔOMN cân tại O

mà OH là đường cao

nên H là trung điểm của MN

Xét tứ giác BMCN có

H là trung điểm chung của MN và BC

BC vuông góc với MN

DO đó: BMCN là hình thoi

b: Xét (O') có

ΔAGC nội tiếp

AC là đường kính

Do đó: ΔAGC vuông tại G

=>CG vuông góc với AM

Xét (O) có

ΔAMB nội tiếp

AB là đường kính

Do đó: ΔAMB vuông tại M

=>MB vuông góc với AM

=>MB//CG

CMBN là hình thoi nên CN//MB

=>CN vuông góc với AM

=>C,N,G thẳng hàng

11 tháng 5 2018

Chọn A.

Đường kính của mặt cầu (S) chính là đường chéo của hình hộp chữ nhật, nên mặt cầu (S) có bán kính

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó diện tích mặt cầu (S) là: S = 4 πr 2  = π( a 2 + b 2 + c 2 )

AH
Akai Haruma
Giáo viên
26 tháng 8 2017

Lời giải:

Vì $ABCD$ là tứ diện đều nên khoảng cách từ trọng tậm $O$ đến các mặt bên là như nhau:

Lấy $H$ là trung điểm của $BC$, Vì tam giác $BCD$ đều nên

\(DH\perp BC\Rightarrow DH=\sqrt{BD^2-BH^2}=\sqrt{a^2-\frac{a^2}{4}}=\frac{\sqrt{3}}{2}a\)

\(\Rightarrow HO=\frac{1}{3}DH=\frac{\sqrt{3}}{6}a\)

\(AH=\sqrt{AB^2-BH^2}=\sqrt{a^2-\frac{a^2}{4}}=\frac{\sqrt{3}a}{2}\)

Do đó, \(AO=\sqrt{AH^2-HO^2}=\frac{\sqrt{6}a}{3}\)

\(\Rightarrow d(I,(BCD))=IO=\frac{AO}{2}=\frac{\sqrt{6}a}{6}\)

Kẻ \(OT\perp AH\Rightarrow d(O,(ABC))=OT=\sqrt{\frac{AO^2.HO^2}{AO^2+HO^2}}=\frac{\sqrt{6}a}{9}\)

\(\frac{d(I,(ABC))}{d(O,(ABC))}=\frac{AI}{IO}=\frac{1}{2}\Rightarrow d(I,(ABC))=\frac{\sqrt{6}a}{18}\)

Hay \(d(I,(ABC))=d(I,(ABD))=d(I,(ACD))=\frac{\sqrt{6}a}{18}\)

Bài 1: Cho hai đường tròn (O) và (O') tiếp xúc ngoài tại B. Vẽ tiếp tuyến chung ngoài AC với A thuộc (O), C thuộc (O'). Tiếp tuyến chung trong tại B cắt AC tại M, MO cắt AB ở K, MO' cắt BC ở H. a) Chứng minh tam giác ABC vuông. b) Tính số do góc OMO' c) Tính độ dài AC biết OB= 5cm, O'B = 3,2cm. d) Tứ giác BKMH là hình gì? Vì sao? e) Chứng minh dẳng thức MK.MO = MH.MO' f) Chứng minh OO' là tiếp tuyến của đường tròn có đường...
Đọc tiếp

Bài 1: Cho hai đường tròn (O) và (O') tiếp xúc ngoài tại B. Vẽ tiếp tuyến chung ngoài AC với A thuộc (O), C thuộc (O'). Tiếp tuyến chung trong tại B cắt AC tại M, MO cắt AB ở K, MO' cắt BC ở H.
a) Chứng minh tam giác ABC vuông.
b) Tính số do góc OMO'
c) Tính độ dài AC biết OB= 5cm, O'B = 3,2cm.
d) Tứ giác BKMH là hình gì? Vì sao?
e) Chứng minh dẳng thức MK.MO = MH.MO'
f) Chứng minh OO' là tiếp tuyến của đường tròn có đường kính AC.
g) Chứng minh AC là tiếp tuyến của đường tròn có đường kính OO'.
Bài 2: Cho đoạnthẳng AB, điểm C nằm giữa A và B. Vẽ về một phía của AB hai nửa đường tròn tâm O và P có đường kính theo thứ tự là AB và AC. Đường vuông góc với AB tại C cắt nửa đường tròn (P) tại M. Gọi N là chân đường vuôn góc kẻ từ C đến DB. Gọi Q là tâm nửa đường tròn ngoại tiếp tam giác CNB.
a) Xác định vị trí tương đối giữa các đường tròn (O) và (P) ; (O) và(Q) ; (P) và (Q).
b) Tứ giác DMCN là hình gì? Vì sao?
c) Chứng minh hệ thức DM.DA = DN.DB
d) Chứng minh MN là tiếp tuyến chung của các nửa đường tròn (P) và (Q)
e) Điểm C ở vị trí nào trên AB thì MN có độ dài lớn nhất.

0
17 tháng 1 2018

Đáp án D

Phương pháp:

- Phương trình đoạn chắn của mặt phẳng đi qua 3 điểm A(a;0;0), B(0;b;0), C(0;0;c) với  a, b, c khác 0

- Sử dụng bất đẳng thức

Đẳng thức xảy ra khi và chỉ khi 

Cách giải:

Mặt phẳng (ABC) có phương trình: 

Khoảng cách từ O đến (ABC): 

Ta có

Dấu “=” xảy ra khi và chỉ khi: