K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2023

dấu <=> đầu tiên = x2-2x+2x-4

20 tháng 3 2023

phần quy đồng bn sai á

16 tháng 8 2019

\(\left(\Sigma\frac{1}{\left(a+b\right)^2}\right)\left(2abc+\Sigma a^2\left(b+c\right)\right)=\Sigma\frac{a\left(b+c\right)^2+\left(a^2+bc\right)\left(b+c\right)}{\left(b+c\right)^2}=\Sigma a+\Sigma\frac{a^2+bc}{b+c}\)

Mặt khác ta có :

\(\left(\Sigma\frac{a^2+bc}{b+c}\right)\left(\Sigma a\right)=\Sigma\frac{a^3+abc}{b+c}+\Sigma\left(a^2+bc\right)\)   ( nhân vào xong tách )

\(=\Sigma\frac{a^3+abc}{b+c}-\Sigma a^2+\Sigma\left(2a^2+bc\right)=\Sigma\frac{a\left(a-b\right)\left(a-c\right)}{b+c}+\Sigma\left(2a^2+bc\right)\)  ( * )

Theo BĐT Vornicu Schur chứng minh được  ( * ) không âm.

do đó : \(\Sigma\frac{a^2+bc}{b+c}\ge\frac{\Sigma\left(2a^2+bc\right)}{\Sigma a}\)

Theo đề bài , cần chứng minh : \(\left(\Sigma ab\right)\left(\Sigma\frac{1}{\left(a+b\right)^2}\right)\ge\frac{9}{4}\)

Kết hợp với dòng đầu tiên t cần c/m :

\(\left(\Sigma ab\right)\left(\Sigma a+\frac{\Sigma\left(2a^2+bc\right)}{\Sigma a}\right)\ge\frac{9}{4}\left(2abc+\Sigma a^2\left(b+c\right)\right)\)

Quy đồng lên, ta được :

\(\Sigma a^3\left(b+c\right)\ge2\Sigma\left(ab\right)^2\Leftrightarrow\Sigma ab\left(a-b\right)^2\ge0\)

\(\Rightarrow\)đpcm

16 tháng 8 2019

Sử dụng dồn biến chứ k phải vậy

NV
11 tháng 3 2023

1. Đ

2. Sai (câu này D mới đúng, C chỉ đúng khi thêm điều kiện a khác 0)

3. A

4. D

5. Sai, B đúng

6. Đ

7. Đ

8. S, đáp án đúng là A

9. S, đáp án đúng là C 

10. Đ

11. Đ

12. Đ

13. S, đáp án đúng là A

14. Đ

15. Đ

16. A

17. A đúng (câu này bản thân đề bài ko rõ ràng, lẽ ra phải ghi là "phương trình bậc nhất một ẩn có thể có bao nhiêu nghiệm")

18. C mới là đáp án đúng

11 tháng 3 2023

Dạ em cảm ơn nhìu ạ 

17 tháng 9 2021

b)\(3x\left(x+3y\right)-6xy\left(x+3y\right)\)

\(=\left(3x-6xy\right)\left(x+3y\right)\)

c)\(x\left(x+y\right)-5x-5y\)

\(=x\left(x+y\right)-5\left(x+y\right)\)

\(=\left(x-5\right)\left(x+y\right)\)

17 tháng 9 2021

Bài 1: 

b. \(3x\left(x+3y\right)-6xy\left(x+3y\right)\)

= (3x - 6xy)(x + 3y)

= 3x(1 - 2y)(x + 3y)

c. \(x\left(x+y\right)-5x-5y\)

= x(x + y) - 5(x + y)

= (x - 5)(x + y)

d. \(3\left(x-y\right)-5x\left(y-x\right)\)

= 3(x - y) + 5x(x - y)

= (3 + 5x)(x - y)

Bài 3:

a. x + 6x2 = 0

<=> x(1 + 6x) = 0

<=> \(\left[{}\begin{matrix}x=0\\1+6x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-1}{6}\end{matrix}\right.\)

b. 2(x + 3) - x(x + 3) = 0

<=> (2 - x)(x + 3) = 0

<=> \(\left[{}\begin{matrix}2-x=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

c. 5x(x - 2) - (2 - x) = 0

<=> 5x(x - 2) + (x - 2) = 0

<=> (5x + 1)(x - 2) = 0

<=> \(\left[{}\begin{matrix}5x+1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{5}\\x=2\end{matrix}\right.\)

d. (x + 1) = (x + 1)2

<=> (x + 1) - (x + 1)2 = 0

<=> (1 - x - 1)(x + 1) = 0

<=> -x(x + 1) = 0

<=> \(\left[{}\begin{matrix}-x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

 

3 tháng 6 2021

\(\dfrac{2\left(5x+2\right)}{9}-1=\dfrac{4\left(33+2x\right)}{5}-\dfrac{5\left(1-11x\right)}{9}\)

\(\dfrac{10\left(5x+2\right)}{45}-\dfrac{45}{45}=\dfrac{36\left(33+2x\right)}{45}-\dfrac{25\left(1-11x\right)}{45}\)

\(50x-20-45=1188+72x-25+275x\)

\(50x-25=347x+1163\)

\(50x-347x=25+1163\)

\(-297x=1188\)

\(x=4\\ \)

d) 

\(\dfrac{2\left(x-4\right)}{3}+\dfrac{3x+13}{8}=\dfrac{2\left(2x-3\right)}{5}+12\)

\(\dfrac{80\left(x-4\right)}{120}+\dfrac{15\left(3x+13\right)}{120}=\dfrac{40\left(2x-3\right)}{120}+\dfrac{1440}{120}\)

\(80x-320+45x+195=80x-120+1440\)

\(125x-125=80x+1320\)

\(125x-80x=125+1320\)

\(45x=1445\)

   \(x=\dfrac{1445}{45}\) \(=\dfrac{289}{9}\)

 

 

3 tháng 6 2021

Sai rồi anh ơi 😢

c)S={-4}

d)S={49}

Sách nó viết thế chứ em ko biết nha

29 tháng 5 2022

Hướng dẫn: A đạt GTLN khi \(\dfrac{1}{A}\) đạt GTNN

Ta có: \(x^2+2\ge0\forall x\)

\(\Rightarrow A=\dfrac{1}{x^2+2}\le\dfrac{1}{2}\forall x\)

Vậy GTLN của A là 1/2

=> A

29 tháng 5 2022

Câu 2: B đạt GTLN khi và chỉ khi x2 đạt giá trị nhỏ nhất

⇔ x2=0 ⇒B = 10 - 0= 0 

  Chọn đáp án B nhe

Câu 3: Có A= 4x - 2x2= (-2x+ 4x - 1) + 1=\(-2\left(x^2-2x+1\right)+1\)

⇔ A= \(-2\left(x-1\right)^2+1\le1\)

Chọn đáp án B nha

 

28 tháng 8 2016

\(A=x^2+x+1=x^2+2.0,5x+0,5^2+0,75=\left(x+0,5\right)^2+0,75\ge0,75>0\)

Vậy A > 0

28 tháng 8 2016

\(A=x^2+x+1\)

Có: \(x^2\ge x\Rightarrow x^2+x\ge0\Rightarrow x^2+1+1\ge1\)

Vậy: \(A>0\)

 

Câu 1: A
Câu 2: B

Câu 3: D
Câu 4: A

Câu 5: C

Câu 6: B

Câu 7: A

Câu 9: B