\(\dfrac{1}{4x-2}\sqrt{\dfrac{8x^3+x-1}{x+4}}\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 2 2019

1/ \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+4x}.\sqrt[3]{1+6x}.\sqrt[4]{1+8x}-\sqrt[3]{1+6x}.\sqrt[4]{1+8x}}{x}+\lim\limits_{x\rightarrow0}\dfrac{\sqrt[3]{1+6x}.\sqrt[4]{1+8x}-\sqrt[3]{1+6x}}{x}+\lim\limits_{x\rightarrow0}\dfrac{\sqrt[3]{1+6x}-1}{x}\)

Liên hợp dài quá ko muốn gõ tiếp, bạn tự đặt nhân tử chung rồi liên hợp nhé, kết quả ra 5

2/ \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{1+7x}-2-\left(x^3-3x+2\right)}{x-1}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{7\left(x-1\right)}{\sqrt[3]{\left(1+7x\right)^2}+2\sqrt[3]{1+7x}+4}-\left(x-1\right)^2\left(x+2\right)}{x-1}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{7}{\sqrt[3]{\left(1+7x\right)^2}+2\sqrt[3]{1+7x}+4}-\left(x-1\right)\left(x+2\right)=\dfrac{7}{12}\)

3/ \(\lim\limits_{x\rightarrow-\infty}\dfrac{x^3-x^2+1}{2x^2+3x-1}=\lim\limits_{x\rightarrow-\infty}\dfrac{x-1+\dfrac{1}{x^2}}{2+\dfrac{3}{x}-\dfrac{1}{x^2}}=-\infty\)

4/ \(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{x}+\sqrt[3]{x}+\sqrt[4]{x}}{\sqrt{4x+1}}=\lim\limits_{x\rightarrow+\infty}\dfrac{1+\dfrac{1}{\sqrt[6]{x}}+\dfrac{1}{\sqrt[4]{x}}}{\sqrt{4+\dfrac{1}{x}}}=\dfrac{1}{\sqrt{4}}=\dfrac{1}{2}\)

5/ \(\lim\limits_{x\rightarrow-\infty}\dfrac{x+\sqrt{x^2+2}}{\sqrt[3]{8x^3+x^2+1}}=\lim\limits_{x\rightarrow-\infty}\dfrac{1-\sqrt{1+\dfrac{2}{x^2}}}{\sqrt[3]{8+\dfrac{1}{x}+\dfrac{1}{x^3}}}=\dfrac{1-1}{\sqrt[3]{8}}=0\)

6/ \(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{4x^2+3x-7}}{\sqrt[3]{27x^3+5x^2+x-4}}=\lim\limits_{x\rightarrow-\infty}\dfrac{-\sqrt{4+\dfrac{3}{x}-\dfrac{7}{x^2}}}{\sqrt[3]{27+\dfrac{5}{x}+\dfrac{1}{x^2}-\dfrac{4}{x^3}}}=\dfrac{-\sqrt{4}}{\sqrt[3]{27}}=\dfrac{-2}{3}\)

27 tháng 9 2018

3.3 d)

\(\sin8x-\cos6x=\sqrt{3}\left(\sin6x+\cos8x\right)\\ \Leftrightarrow\sin8x-\sqrt{3}\cos8x=\sqrt{3}\sin6x+\cos6x\\ \Leftrightarrow\sin\left(8x-\dfrac{\pi}{3}\right)=\sin\left(6x+\dfrac{\pi}{6}\right)\\ \Leftrightarrow\left[{}\begin{matrix}8x-\dfrac{\pi}{3}=6x+\dfrac{\pi}{6}+k2\pi\\8x-\dfrac{\pi}{3}=\pi-\left(6x+\dfrac{\pi}{6}\right)+k2\pi\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=\dfrac{\pi}{12}+k\dfrac{\pi}{7}\end{matrix}\right.\)

27 tháng 9 2018

3.4 a)

\(2sin\left(x+\dfrac{\pi}{4}\right)+4sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3\sqrt{2}}{5}\\ \Leftrightarrow2cos\left(\dfrac{\pi}{2}-x-\dfrac{\pi}{4}\right)+4sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3\sqrt{2}}{5}\\ \Leftrightarrow2cos\left(-x+\dfrac{\pi}{4}\right)+4sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3\sqrt{2}}{5}\\ \Leftrightarrow2cos\left(x-\dfrac{\pi}{4}\right)+4sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3\sqrt{2}}{5}\\ \)

Chia hai vế cho \(\sqrt{2^2+4^2}=2\sqrt{5}\)

Ta được:

\(\dfrac{1}{\sqrt{5}}cos\left(x-\dfrac{\pi}{4}\right)+\dfrac{2}{\sqrt{5}}sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3}{4}\\ \)

Gọi \(\alpha\) là góc có \(cos\alpha=\dfrac{1}{\sqrt{5}}\)\(sin\alpha=\dfrac{2}{\sqrt{5}}\)

Phương trình tương đương:

\(cos\left(x-\dfrac{\pi}{4}-\alpha\right)=\dfrac{3}{4}\\ \Leftrightarrow x=\pm arscos\left(\dfrac{3}{4}\right)+\dfrac{\pi}{4}+\alpha+k2\pi\)

NV
31 tháng 1 2019

1/ \(\lim\limits_{x\rightarrow0}\dfrac{2\sqrt{1+x}-2+2-\sqrt[3]{8-x}}{x}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{2x}{\sqrt{1+x}+1}+\dfrac{x}{4+2\sqrt[3]{8-x}+\sqrt[3]{\left(8-x\right)^2}}}{x}\)

\(=\lim\limits_{x\rightarrow0}\left(\dfrac{2}{\sqrt{1+x}+1}+\dfrac{1}{4+2\sqrt[3]{8-x}+\sqrt[3]{\left(8-x\right)^2}}\right)=\dfrac{13}{12}\)

2/ \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{x+7}-\sqrt{x+3}}{x^2-3x+2}=\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{x+7}-2-\left(\sqrt{x+3}-2\right)}{\left(x-1\right)\left(x-2\right)}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{x-1}{\sqrt[3]{\left(x+7\right)^2}+2\sqrt[3]{x+7}+4}-\dfrac{x-1}{\sqrt{x+3}+2}}{\left(x-1\right)\left(x-2\right)}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{1}{\sqrt[3]{\left(x+7\right)^2}+2\sqrt[3]{x+7}+4}-\dfrac{1}{\sqrt{x+3}+2}}{x-2}=\dfrac{1}{6}\)

3/ \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{x^2+7}-\sqrt{5-x^2}}{x^2-1}=\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{x^2+7}-2+2-\sqrt{5-x^2}}{x^2-1}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{\left(x^2-1\right)}{\sqrt[3]{\left(x^2+7\right)^2}+2\sqrt[3]{x^2+7}+4}+\dfrac{x^2-1}{2+\sqrt{5-x^2}}}{x^2-1}\)

\(=\lim\limits_{x\rightarrow1}\left(\dfrac{1}{\sqrt[3]{\left(x^2+7\right)^2}+2\sqrt[3]{x^2+7}+4}+\dfrac{1}{2+\sqrt{5-x^2}}\right)=\dfrac{1}{3}\)

4/ \(\lim\limits_{x\rightarrow-2}\dfrac{\sqrt{x+11}-\sqrt[3]{8x+43}}{2x^2+3x-2}=\lim\limits_{x\rightarrow-2}\dfrac{\sqrt{x+11}-3-\left(\sqrt[3]{8x+43}-3\right)}{\left(2x-1\right)\left(x+2\right)}\)

\(=\lim\limits_{x\rightarrow-2}\dfrac{\dfrac{x+2}{\sqrt{x+11}+3}-\dfrac{8\left(x+2\right)}{\sqrt[3]{\left(8x+43\right)^2}+3\sqrt[3]{8x+43}+9}}{\left(2x-1\right)\left(x+2\right)}\)

\(=\lim\limits_{x\rightarrow-2}\dfrac{\dfrac{1}{\sqrt{x+11}+3}-\dfrac{8}{\sqrt[3]{\left(8x+43\right)^2}+3\sqrt[3]{8x+43}+9}}{2x-1}=\dfrac{7}{270}\)

5/ \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt[n]{1+ax}-\sqrt[m]{1+bx}}{x}=\lim\limits_{x\rightarrow0}\dfrac{\sqrt[n]{1+ax}-1-\left(\sqrt[m]{1+bx}-1\right)}{x}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{ax}{\sqrt[n]{\left(1+ax\right)^{n-1}}+\sqrt[n]{\left(1+ax\right)^{n-2}}+...+1}-\dfrac{bx}{\sqrt[m]{\left(1+bx\right)^{m-1}}+\sqrt[m]{\left(1+ax\right)^{m-2}}+...+1}}{x}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{a}{\sqrt[n]{\left(1+ax\right)^{n-1}}+\sqrt[n]{\left(1+ax\right)^{n-2}}+...+1}-\dfrac{b}{\sqrt[m]{\left(1+bx\right)^{m-1}}+\sqrt[m]{\left(1+ax\right)^{m-2}}+...+1}\)

\(=\dfrac{a}{n}-\dfrac{b}{m}\)

6/ \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+4x}.\sqrt[3]{1+6x}-1}{x}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+4x}.\sqrt[3]{1+6x}-\sqrt{1+4x}+\sqrt{1+4x}-1}{x}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+4x}.\left(\sqrt[3]{1+6x}-1\right)+\sqrt{1+4x}-1}{x}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+4x}.\dfrac{6x}{\sqrt[3]{\left(1+6x\right)^2}+\sqrt[3]{1+6x}+1}+\dfrac{4x}{\sqrt{1+4x}+1}}{x}\)

\(=\lim\limits_{x\rightarrow0}\left(\dfrac{6\sqrt{1+4x}}{\sqrt[3]{\left(1+6x\right)^2}+\sqrt[3]{1+6x}+1}+\dfrac{4}{\sqrt{1+4x}+1}\right)=4\)

NV
24 tháng 1 2019

\(\lim\limits_{x\rightarrow1}\dfrac{x^3-3x+2}{x^4-4x+3}=\lim\limits_{x\rightarrow1}\dfrac{\left(x+2\right)\left(x-1\right)^2}{\left(x^2+2x+3\right)\left(x-1\right)^2}=\lim\limits_{x\rightarrow1}\dfrac{x+2}{x^2+2x+3}=\dfrac{1}{2}\)

\(\lim\limits_{x\rightarrow2^-}\dfrac{x^3+x^2-4x-4}{x^2-4x+4}=\lim\limits_{x\rightarrow2^-}\dfrac{\left(x-2\right)\left(x^2+3x+2\right)}{\left(x-2\right)^2}=\lim\limits_{x\rightarrow2^-}\dfrac{x^2+3x+2}{x-2}=-\infty\)

\(\lim\limits_{x\rightarrow2}\dfrac{\left(x^2-x-2\right)^{20}}{\left(x^3-12x+16\right)^{10}}=\lim\limits_{x\rightarrow2}\dfrac{\left(x+1\right)^{20}\left(x-2\right)^{20}}{\left(x+4\right)^{10}\left(x-2\right)^{20}}=\lim\limits_{x\rightarrow2}\dfrac{\left(x+1\right)^{20}}{\left(x+4\right)^{10}}=\dfrac{3^{10}}{2^{10}}\)

\(\lim\limits_{x\rightarrow0^-}\dfrac{4x^2+5x}{x^2}=\lim\limits_{x\rightarrow0^-}\dfrac{4x+5}{x}=-\infty\)

\(\lim\limits_{x\rightarrow-1}\dfrac{\sqrt{x+2}-1}{\sqrt{x+5}-2}=\lim\limits_{x\rightarrow-1}\dfrac{\left(x+1\right)\left(\sqrt{x+5}+2\right)}{\left(x+1\right)\left(\sqrt{x+2}+1\right)}=\lim\limits_{x\rightarrow-1}\dfrac{\sqrt{x+5}+2}{\sqrt{x+2}+1}=2\)

AH
Akai Haruma
Giáo viên
14 tháng 5 2021

1.

\(\lim\limits_{x\to (-1)-}\frac{\sqrt{x^2-3x-4}}{1-x^2}=\lim\limits_{x\to (-1)-}\frac{\sqrt{(x+1)(x-4)}}{(1-x)(1+x)}\)

\(=\lim\limits_{x\to (-1)-}\frac{\sqrt{4-x}}{(x-1)\sqrt{-(x+1)}}=-\infty\) do:

\(\lim\limits_{x\to (-1)-}\frac{\sqrt{4-x}}{x-1}=\frac{-\sqrt{5}}{2}<0\) và \(\lim\limits_{x\to (-1)-}\frac{1}{\sqrt{-(x+1)}}=+\infty\)

 

AH
Akai Haruma
Giáo viên
14 tháng 5 2021

2.

\(\lim\limits_{x\to 2+}\left(\frac{1}{x-2}-\frac{x+1}{\sqrt{x+2}-2}\right)=\lim\limits_{x\to 2+}\frac{1-(x+1)(\sqrt{x+2}+2)}{x-2}=-\infty\) do:

\(\lim\limits_{x\to 2+}\frac{1}{x-2}=+\infty\) và \(\lim\limits_{x\to 2+}[1-(x+1)(\sqrt{x+2}+2)]=-11<0\)

 

4 tháng 4 2017

Giải bài 1 trang 176 sgk Đại Số 11 | Để học tốt Toán 11

Giải bài 1 trang 176 sgk Đại Số 11 | Để học tốt Toán 11

AH
Akai Haruma
Giáo viên
5 tháng 3 2018

Câu 1:

\(\lim _{x\to +\infty}(2x-1-\sqrt{4x^2-4x-3})=\lim_{x\to +\infty}\frac{(2x-1)^2-(4x^2-4x-3)}{2x-1+\sqrt{4x^2-4x-3}}\) (liên hợp)

\(=\lim_{x\to +\infty}\frac{4}{2x-1+\sqrt{4x^2-4x-3}}=4\lim_{x\to +\infty}\frac{1}{2x-1+\sqrt{4x^2-4x-3}}\)

Ta thấy với \(x\to +\infty\Rightarrow 2x-1+\sqrt{4x^2-4x-3}\to +\infty\)

Do đó: \(\lim_{x\to +\infty}\frac{1}{2x-1+\sqrt{4x^2-4x-3}}=0\) (theo dạng \(\lim _{t\to \infty}\frac{1}{t}=0\) )

\(\Rightarrow \lim _{x\to +\infty}(2x-1-\sqrt{4x^2-4x-3})=0\)

 

Câu 3:

\(\lim_{x\to 1+} (x^3-1)\sqrt{\frac{x}{x^2-1}}=\lim_{x\to 1+}(x^2+x+1)\sqrt{\frac{x(x-1)^2}{x^2-1}}\)

\(=\lim_{x\to 1+}(x^2+x+1)\sqrt{\frac{x(x-1)}{x+1}}=(1+1+1)\sqrt{\frac{1.0}{1+1}}=0\)

 

 

AH
Akai Haruma
Giáo viên
5 tháng 3 2018

Câu 2:

\(\lim_{x\to 3}\frac{\sqrt{2x^2-2}-\sqrt{4x-3}+2x-7}{9-x^2}=\lim_{x\to 3}\frac{\sqrt{2x^2-2}-4}{9-x^2}-\lim_{x\to 3}\frac{\sqrt{4x-3}-3}{9-x^2}+\lim_{x\to 3}\frac{2x-6}{9-x^2}\)

Ta có:

\(\lim_{x\to 3}\frac{2x^2-2-16}{(\sqrt{2x^2-2}+4)(9-x^2)}=\lim_{x\to 3}\frac{2(x^2-9)}{(\sqrt{2x^2-2}+4)(9-x^2)}=\lim_{x\to 3}\frac{-2}{\sqrt{2x^2-2}+4}=\frac{-1}{4}\) (1)

\(\lim_{x\to 3}\frac{\sqrt{4x-3}-3}{9-x^2}=\lim_{x\to 3}\frac{4x-3-9}{(\sqrt{4x-3}+3)(9-x^2)}=\lim_{x\to 3}\frac{4(x-3)}{(\sqrt{4x-3}+3)(9-x^2)}\)

\(=\lim_{x\to 3}\frac{-4}{(\sqrt{4x-3}+3)(3+x)}=-\frac{1}{9}\) (2)

\(\lim _{x\to 3}\frac{2x-6}{9-x^2}=\lim_{x\to 3}\frac{2(x-3)}{9-x^2}=\lim_{x\to 3}\frac{-2}{x+3}=\frac{-1}{3}\) (3)

Từ \((1); (2); (3)\Rightarrow \lim_{x\to 3}\frac{\sqrt{2x^2-2}-\sqrt{4x-3}+2x-7}{9-x^2}=\frac{-1}{4}+\frac{1}{9}-\frac{1}{3}=\frac{-17}{36}\)