K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
Bảng xếp hạng
Tất cả
Toán
Vật lý
Hóa học
Sinh học
Ngữ văn
Tiếng anh
Lịch sử
Địa lý
Tin học
Công nghệ
Giáo dục công dân
Âm nhạc
Mỹ thuật
Tiếng anh thí điểm
Lịch sử và Địa lý
Thể dục
Khoa học
Tự nhiên và xã hội
Đạo đức
Thủ công
Quốc phòng an ninh
Tiếng việt
Khoa học tự nhiên
- Tuần
- Tháng
- Năm
-
DHĐỗ Hoàn VIP60 GP
-
50 GP
-
41 GP
-
26 GP
-
119 GP
-
VN18 GP
-
14 GP
-
N12 GP
-
LD10 GP
-
10 GP
\(\lim\limits_{x\rightarrow3}\dfrac{\sqrt{6x-9}-\sqrt[3]{27x-54}}{\left(x-3\right)\left(x^2+3x-18\right)}\)
\(=\lim\limits_{x\rightarrow3}\dfrac{\sqrt{6x-9}-x+x-\sqrt[3]{27x-54}}{\left(x-3\right)^2\left(x+6\right)}\)
\(=\lim\limits_{x\rightarrow3}\dfrac{\dfrac{6x-9-x^2}{\sqrt{6x-9}+x}+\dfrac{x^3-27x+54}{x^2+x\cdot\sqrt[3]{27x-54}+\sqrt[3]{\left(27x-54\right)^2}}}{\left(x-3\right)^2\left(x+6\right)}\)
\(=\lim\limits_{x\rightarrow3}\dfrac{\dfrac{-\left(x-3\right)^2}{\sqrt{6x-9}+x}+\dfrac{\left(x-3\right)^2\left(x+6\right)}{x^2+x\cdot\sqrt[3]{27x-54}+\sqrt[3]{\left(27x-54\right)^2}}}{\left(x-3\right)^2\left(x+6\right)}\)
\(=\lim\limits_{x\rightarrow3}\dfrac{\dfrac{-1}{\sqrt{6x-9}+x}+\dfrac{\left(x+6\right)}{x^2+x\cdot\sqrt[3]{27x-54}+\sqrt[3]{\left(27x-54\right)^2}}}{\left(x+6\right)}\)
\(=\dfrac{-\dfrac{1}{\sqrt{6\cdot3-9}+3}+\dfrac{3+6}{3^2+3\cdot\sqrt[3]{27\cdot3-54}+\sqrt[3]{\left(27\cdot3-54\right)^2}}}{3+6}\)
\(=\dfrac{-\dfrac{1}{3+3}+\dfrac{9}{9+3\cdot3+3^2}}{9}=\dfrac{-\dfrac{1}{6}+\dfrac{1}{3}}{9}=\dfrac{\dfrac{1}{6}}{9}=\dfrac{1}{54}\)
Phương pháp đạo hàm ý em là định lý L'Hopital hả? Định lý L'Hopital là 1 phương pháp rất mạnh để giải các bài giới hạn dạng phân thức \(\dfrac{0}{0}\) hoặc \(\dfrac{\infty}{\infty}\), nhưng người ta hạn chế sử dụng khi xuất hiện căn thức (lý do là khi đạo hàm thì căn thức không những gọn đi mà còn "phình to" ra rất nhiều). Ưu điểm là nó khử dạng vô định rất nhanh chóng. Còn khi phân thức mà tử mẫu đều ko xuất hiện căn thức thì đó đúng là 1 pp mạnh tuyệt đối.
Định lý nó như sau: nếu \(f\left(x\right)\) và \(g\left(x\right)\) cùng tiến tới 0 (hoặc \(+\infty\) hoặc \(-\infty\)) khi \(x\rightarrow a\) nào đó thì:
\(\lim\limits_{x\rightarrow a}\dfrac{f\left(x\right)}{g\left(x\right)}=\lim\limits_{x\rightarrow a}\dfrac{f'\left(x\right)}{g'\left(x\right)}\)
Bài này có cả căn bậc 3 nên đạo hàm ko được đẹp lắm. Tự hiểu là giới hạn nha, vì công thức latex gõ giới hạn hơi phức tạp, tốn thời gian lắm, gõ 1 biểu thức thôi thì lẹ gấp chục lần:
\(\dfrac{\sqrt[]{6x-9}-\sqrt[3]{27x-54}}{\left(x-3\right)\left(x^2+3x-18\right)}=\dfrac{\dfrac{3}{\sqrt[]{6x-9}}-\dfrac{1}{\sqrt[3]{\left(x-2\right)^2}}}{x^2+3x-18+\left(x-3\right)\left(2x+3\right)}\)
Vậy là mất dạng vô định, thay số là xong.
Còn thêm bớt liên hợp thì khá đơn giản, do \(x\rightarrow3\) nên ta thay \(x=3\) vào 1 căn thức bất kì, ví dụ căn đầu, được \(\sqrt{6.3-9}=3\), vậy ta chỉ cần thêm bớt 3 vào tử số rồi liên hợp là được:
\(=\dfrac{\left(\sqrt[]{6x-9}-3\right)+\left(3-3\sqrt[3]{x-2}\right)}{\left(x-3\right)\left(x^2+3x-18\right)}\)