Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ko thể dịch nổi đề câu 1 a;b, chỉ đoán thôi. Còn câu 2 thì thực sự là chẳng hiểu bạn viết cái gì nữa? Chưa bao giờ thấy kí hiệu tích phân đi kèm kiểu đó
Câu 1:
a/ \(\int\frac{2x+4}{x^2+4x-5}dx=\int\frac{d\left(x^2+4x-5\right)}{x^2+4x-5}=ln\left|x^2+4x-5\right|+C\)
b/ \(\int\frac{1}{x.lnx}dx\)
Đặt \(t=lnx\Rightarrow dt=\frac{dx}{x}\)
\(\Rightarrow I=\int\frac{dt}{t}=ln\left|t\right|+C=ln\left|lnx\right|+C\)
c/ \(I=\int x.sin\frac{x}{2}dx\)
Đặt \(\left\{{}\begin{matrix}u=x\\dv=sin\frac{x}{2}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=dx\\v=-2cos\frac{x}{2}\end{matrix}\right.\)
\(\Rightarrow I=-2x.cos\frac{x}{2}+2\int cos\frac{x}{2}dx=-2x.cos\frac{x}{2}+4sin\frac{x}{2}+C\)
d/ Đặt \(\left\{{}\begin{matrix}u=ln\left(2x\right)\\dv=x^3dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\frac{2dx}{2x}=\frac{dx}{x}\\v=\frac{1}{4}x^4\end{matrix}\right.\)
\(\Rightarrow I=\frac{1}{4}x^4.ln\left(2x\right)-\frac{1}{4}\int x^3dx=\frac{1}{4}x^4.ln\left(2x\right)-\frac{1}{16}x^4+C\)
Lời giải:
Câu 1:
\(5^{2x}=3^{2x}+2.5^x+2.3^x\)
\(\Leftrightarrow 5^{2x}-2.5^x+1=3^{2x}+2.3^x+1\)
\(\Leftrightarrow (5^x-1)^2=(3^x+1)^2\)
\(\Leftrightarrow (5^x-1-3^x-1)(5^x-1+3^x+1)=0\)
\(\Leftrightarrow (5^x-3^x-2)(5^x+3^x)=0\)
Vì \(3^x,5^x>0\Rightarrow 3^x+5^x>0\), do đó từ pt trên ta có \(5^x-3^x=2\)
\(\Leftrightarrow 5^x=3^x+2\)
TH1: \(x>1\)
\(\Rightarrow 5^x=3^x+2< 3^x+2^x\)
\(\Leftrightarrow 1< \left(\frac{3}{5}\right)^x+\left(\frac{2}{5}\right)^x\)
Vì bản thân \(\frac{2}{5},\frac{3}{5}<1\), và \(x>1\Rightarrow \left(\frac{2}{5}\right)^x< \frac{2}{5};\left(\frac{3}{5}\right)^x<\frac{3}{5}\)
\(\Rightarrow \left(\frac{2}{5}\right)^x+\left(\frac{3}{5}\right)^x< 1\) (vô lý)
TH2: \(x<1 \Rightarrow 5^x=3^x+2> 3^x+2^x\)
\(\Leftrightarrow 1>\left(\frac{3}{5}\right)^x+\left(\frac{2}{5}\right)^x\)
Vì \(\frac{2}{5};\frac{3}{5}<1; x<1\Rightarrow \left(\frac{3}{5}\right)^x> \frac{3}{5}; \left(\frac{2}{5}\right)^x>\frac{2}{5}\Rightarrow \left(\frac{2}{5}\right)^x+\left(\frac{3}{5}\right)^x>1\)
(vô lý)
Vậy \(x=1\)
Câu 2:
Ta có \(1+6.2^x+3.5^x=10^x\)
\(\Leftrightarrow \frac{1}{10^x}+6.\frac{1}{5^x}+3.\frac{1}{2^x}=1\)
\(\Leftrightarrow 10^{-x}+6.5^{-x}+3.2^{-x}=1\)
Ta thấy, đạo hàm vế trái là một giá trị âm, vế phải là hàm hằng có đạo hàm bằng 0, do đó pt có nghiệm duy nhất.
Thấy \(x=2\) thỏa mãn nên nghiệm duy nhất của pt là x=2
Câu 3:
\(6(\sqrt{5}+1)^x-2(\sqrt{5}-1)^x=2^{x+2}\)
Đặt \(\sqrt{5}+1=a\), khi đó sử dụng định lý Viete đảo ta duy ra a là nghiệm của phương trình \(a^2-2a-4=0\)
Mặt khác, từ pt ban đầu suy ra \(6.a^x-2\left(\frac{4}{a}\right)^x=2^{x+2}\)
\(\Leftrightarrow 6.a^{2x}-2^{x+2}a^x-2^{2x+1}=0\)
\(\Leftrightarrow 2(a^x-2^x)^2+4(a^{2x}-2^{2x})=0\)
\(\Leftrightarrow 2(a^x-2^x)^2+4(a^x-2^x)(a^x+2^x)=0\)
\(\Leftrightarrow (a^x-2^x)(6a^x+2^{x+1})=0\)
Dễ thấy \(6a^x+2^{x+1}>0\forall x\in\mathbb{R}\Rightarrow a^x-2^x=0\)
\(\Leftrightarrow (\sqrt{5}+1)^x=2^x\Leftrightarrow x=0\)
\(\lim\limits_{x\rightarrow0}\dfrac{cos\sqrt{x}-1}{ln\left(x+1\right)}=-\dfrac{1}{2}\).
\(8,\dfrac{bc}{\sqrt{3a+bc}}=\dfrac{bc}{\sqrt{\left(a+b+c\right)a+bc}}=\dfrac{bc}{\sqrt{a^2+ab+ac+bc}}\)
\(=\dfrac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{\dfrac{b}{a+b}+\dfrac{c}{a+c}}{2}\)
Tương tự cho các số còn lại rồi cộng vào sẽ được
\(S\le\dfrac{3}{2}\)
Dấu "=" khi a=b=c=1
Vậy
\(7,\sqrt{\dfrac{xy}{xy+z}}=\sqrt{\dfrac{xy}{xy+z\left(x+y+z\right)}}=\sqrt{\dfrac{xy}{xy+xz+yz+z^2}}\)
\(=\sqrt{\dfrac{xy}{\left(x+z\right)\left(y+z\right)}}\le\dfrac{\dfrac{x}{x+z}+\dfrac{y}{y+z}}{2}\)
Cmtt rồi cộng vào ta đc đpcm
Dấu "=" khi x = y = z = 1/3
a) Điều kiện: \(\left\{{}\begin{matrix}4x+2>0\\x-1>0\\x>0\end{matrix}\right.\)
Hay là: \(x>1\)
Khi đó biến đổi pương trình như sau:
\(\ln\dfrac{4x+2}{x-1}=\ln x\)
\(\Leftrightarrow\dfrac{4x+2}{x-1}=x\)
\(\Leftrightarrow4x+2=x\left(x-1\right)\)
\(\Leftrightarrow x^2-5x-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x_1=\dfrac{5+\sqrt{33}}{2}\\x_2=\dfrac{5-\sqrt{33}}{2}\left(loại\right)\end{matrix}\right.\)
Vậy nghiệm của phương trình là: \(x=\dfrac{5+\sqrt{33}}{2}\)
b) Điều kiện: \(\left\{{}\begin{matrix}3x+1>0\\x>0\end{matrix}\right.\)
Hay là: \(x>0\)
Biến đổi phương trình như sau:
\(\log_2\left(3x+1\right)\log_3x-2\log_2\left(3x+1\right)=0\)
\(\Leftrightarrow\log_2\left(3x+1\right)\left(\log_3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\log_2\left(3x+1\right)=0\\\log_3x=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+1=2^0\\x=3^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=9\end{matrix}\right.\)
Vậy nghiệm là x = 9.
\(\left(2\right)^x-2.2^{2x}-3.2^{x-1}=0\)
Đặt \(2^x\) = t (t>0)
=> \(t-2t^2-\dfrac{3t}{2}=0\)
=> \(\left[{}\begin{matrix}t=\dfrac{-1}{4}\\t=0\end{matrix}\right.\)( loại)
d) Điều kiện \(\begin{cases}x\ne0\\\log_2\left|x\right|\ge0\end{cases}\)\(\Leftrightarrow\left|x\right|\ge\)1
Phương trình đã cho tương đương với :
\(\log_2\left|x\right|^{\frac{1}{2}}-4\sqrt{\log_{2^2}\left|x\right|}-5=0\)
\(\Leftrightarrow\frac{1}{2}\log_2\left|x\right|-4\sqrt{\frac{1}{4}\log_2\left|x\right|}-5=0\)
Đặt \(t=\sqrt{\frac{1}{2}\log_2\left|x\right|}\) \(\left(t\ge0\right)\) thì phương trình trở thành :
\(t^2-4t-5=0\) hay t=-1 V t=5
Do \(t\ge0\) nên t=5
\(\Rightarrow\frac{1}{2}\log_2\left|x\right|=25\Leftrightarrow\log_2\left|x\right|=50\Leftrightarrow\left|x\right|=2^{50}\) Thỏa mãn
Vậy \(x=\pm2^{50}\) là nghiệm của phương trình
c) Điều kiện x>0. Phương trình đã cho tương đương với :
\(x^{lg^2x^2-3lgx-\frac{9}{2}}=\left(10^{lgx}\right)^{-2}\)
\(\Leftrightarrow lg^2x^2-3lgx-\frac{9}{2}=-2\)
\(\Leftrightarrow8lg^2x-6lgx-5=0\)
Đặt \(t=lgx\left(t\in R\right)\) thì phương trình trở thành
\(8t^2-6t-5=0\) hay\(t=-\frac{1}{2}\) V \(t=\frac{5}{4}\)
Với \(t=-\frac{1}{2}\) thì \(lgx=-\frac{1}{2}\Leftrightarrow x=\frac{1}{\sqrt{10}}\)
Với \(t=\frac{5}{4}\) thì \(lgx=\frac{5}{4}\Leftrightarrow x=\sqrt[4]{10^5}\)
Vậy phương trình đã cho có nghiệm \(x=\sqrt[4]{10^5}\) và \(x=\frac{1}{\sqrt{10}}\)