Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự hiểu là giới hạn tiến đến đâu nhé, làm biếng gõ đủ công thức
a. \(\frac{\sqrt{1+x}-1+1-\sqrt[3]{1+x}}{x}=\frac{\frac{x}{\sqrt{1+x}+1}-\frac{x}{1+\sqrt[3]{1+x}+\sqrt[3]{\left(1+x\right)^2}}}{x}=\frac{1}{\sqrt{1+x}+1}-\frac{1}{1+\sqrt[3]{1+x}+\sqrt[3]{\left(1+x\right)^2}}=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\)
b.
\(\frac{1-x^3-1+x}{\left(1-x\right)^2\left(1+x+x^2\right)}=\frac{x\left(1-x\right)\left(1+x\right)}{\left(1-x\right)^2\left(1+x+x^2\right)}=\frac{x\left(1+x\right)}{\left(1-x\right)\left(1+x+x^2\right)}=\frac{2}{0}=\infty\)
c.
\(=\frac{-2}{\sqrt[3]{\left(2x-1\right)^2}+\sqrt[3]{\left(2x+1\right)^2}+\sqrt[3]{\left(2x-1\right)\left(2x+1\right)}}=\frac{-2}{\infty}=0\)
d.
\(=x\sqrt[3]{3-\frac{1}{x^3}}-x\sqrt{1+\frac{2}{x^2}}=x\left(\sqrt[3]{3-\frac{1}{x^3}}-\sqrt{1+\frac{2}{x^2}}\right)=-\infty\)
e.
\(=\frac{2x^2-8x+8}{\left(x-1\right)\left(x-2\right)\left(x-2\right)\left(x-3\right)}=\frac{2\left(x-2\right)^2}{\left(x-1\right)\left(x-3\right)\left(x-2\right)^2}=\frac{2}{\left(x-1\right)\left(x-3\right)}=\frac{2}{-1}=-2\)
f.
\(=\frac{2x}{x\sqrt{4+x}}=\frac{2}{\sqrt{4+x}}=1\)
Bài 1:
\(a=\lim\limits_{x\rightarrow-\infty}\frac{2\left|x\right|+1}{3x-1}=\lim\limits_{x\rightarrow-\infty}\frac{-2x+1}{3x-1}=\lim\limits_{x\rightarrow-\infty}\frac{-2+\frac{1}{x}}{3-\frac{1}{x}}=-\frac{2}{3}\)
\(b=\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{9+\frac{1}{x}+\frac{1}{x^2}}-\sqrt{4+\frac{2}{x}+\frac{1}{x^2}}}{1+\frac{1}{x}}=\frac{\sqrt{9}-\sqrt{4}}{1}=1\)
\(c=\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{1+\frac{2}{x}+\frac{3}{x^2}}+4+\frac{1}{x}}{\sqrt{4+\frac{1}{x^2}}+\frac{2}{x}-1}=\frac{1+4}{\sqrt{4}-1}=5\)
\(d=\lim\limits_{x\rightarrow+\infty}\frac{\frac{3}{x}-\frac{2}{x\sqrt{x}}+\sqrt{1-\frac{5}{x^3}}}{2+\frac{4}{x}-\frac{5}{x^2}}=\frac{1}{2}\)
Bài 2:
\(a=\lim\limits_{x\rightarrow-\infty}\frac{2+\frac{1}{x}}{1-\frac{1}{x}}=2\)
\(b=\lim\limits_{x\rightarrow-\infty}\frac{2+\frac{3}{x^3}}{1-\frac{2}{x}+\frac{1}{x^3}}=2\)
\(c=\lim\limits_{x\rightarrow+\infty}\frac{x^2\left(3+\frac{1}{x^2}\right)x\left(5+\frac{3}{x}\right)}{x^3\left(2-\frac{1}{x^3}\right)x\left(1+\frac{4}{x}\right)}=\frac{15}{+\infty}=0\)
Lời giải:
a)
\(\lim\limits_{x\to-1}\frac{\sqrt[3]{x}+1}{2x^2+5x+3}=\lim\limits_{x\to-1}\frac{x+1}{\left(\sqrt[3]{x^2}-\sqrt[3]{x}+1\right)\left(x+1\right)\left(2x+3\right)}\)
\(\lim\limits_{x\to-1}\frac{1}{\left(\sqrt[3]{x^2}-\sqrt[3]{x}+1\right)\left(2x+3\right)}=\frac{1}{\left(\sqrt[3]{\left(-1\right)^2}-\sqrt[3]{-1}+1\right)\left(2.-1+3\right)}=\frac{1}{3}\)
b)
\(\lim\limits_{x\to1}\frac{\sqrt[3]{x^2}-2\sqrt[3]{x}+1}{\left(x-1\right)^2}=\lim\limits_{x\to1}\frac{\left(\sqrt[3]{x}-1\right)^2}{\left(x-1\right)^2}=\lim\limits_{x\to1}\frac{\left(x-1\right)^2}{\left(\sqrt[3]{x^2}+\sqrt[3]{x}+1\right)^2\left(x-1\right)^2}\)
\(=\lim\limits_{x\to1}\frac{1}{\left(\sqrt[3]{x^2}+\sqrt[3]{x}+1\right)^2}=\frac{1}{\left(1+1+1\right)^2}=\frac{1}{9}\)
c)
\(\lim_{x\to 1}\frac{\sqrt[4]{x}-1}{x^3+x^2-2}=\lim_{x\to 1}\frac{\sqrt[4]{x}-1}{(x-1)(x^2+2x+2)}=\lim_{x\to 1}\frac{x-1}{(\sqrt{x}+1)(\sqrt[4]{x}+1)(x-1)(x^2+2x+2)}\)
\(=\lim_{x\to 1}\frac{1}{(\sqrt{x}+1)(\sqrt[4]{x}+1)(x^2+2x+2)}=\frac{1}{(1+1)(1+1)(1+2.1+2)}=\frac{1}{20}\)
d)
\(\lim_{x\to -2}\frac{\sqrt[3]{2x+12}+x}{x^2+2x}=\lim_{x\to -2}\frac{2x+12+x^3}{(\sqrt[3]{(2x+12)^2}-x\sqrt[3]{2x+12}+x^2).x(x+2)}\)
\(=\lim_{x\to -2}\frac{(x+2)(x^2-2x+6)}{(\sqrt[3]{(2x+12)^2}-x\sqrt[3]{2x+12}+x^2).x(x+2)}=\lim_{x\to -2}\frac{x^2-2x+6}{(\sqrt[3]{(2x+12)^2}-x\sqrt[3]{2x+12}+x^2).x}\)
\(=\frac{-7}{12}\)
Lời giải:
a)
\(\lim\limits_{x\to-1}\frac{\sqrt[3]{x}+1}{2x^2+5x+3}=\lim\limits_{x\to-1}\frac{x+1}{\left(\sqrt[3]{x^2}-\sqrt[3]{x}+1\right)\left(x+1\right)\left(2x+3\right)}\)
\(\lim\limits_{x\to-1}\frac{1}{\left(\sqrt[3]{x^2}-\sqrt[3]{x}+1\right)\left(2x+3\right)}=\frac{1}{\left(\sqrt[3]{\left(-1\right)^2}-\sqrt[3]{-1}+1\right)\left(2.-1+3\right)}=\frac{1}{3}\)
b)
\(\lim\limits_{x\to1}\frac{\sqrt[3]{x^2}-2\sqrt[3]{x}+1}{\left(x-1\right)^2}=\lim\limits_{x\to1}\frac{\left(\sqrt[3]{x}-1\right)^2}{\left(x-1\right)^2}=\lim\limits_{x\to1}\frac{\left(x-1\right)^2}{\left(\sqrt[3]{x^2}+\sqrt[3]{x}+1\right)^2\left(x-1\right)^2}\)
\(=\lim\limits_{x\to1}\frac{1}{\left(\sqrt[3]{x^2}+\sqrt[3]{x}+1\right)^2}=\frac{1}{\left(1+1+1\right)^2}=\frac{1}{9}\)
c)
\(\lim_{x\to 1}\frac{\sqrt[4]{x}-1}{x^3+x^2-2}=\lim_{x\to 1}\frac{\sqrt[4]{x}-1}{(x-1)(x^2+2x+2)}=\lim_{x\to 1}\frac{x-1}{(\sqrt{x}+1)(\sqrt[4]{x}+1)(x-1)(x^2+2x+2)}\)
\(=\lim_{x\to 1}\frac{1}{(\sqrt{x}+1)(\sqrt[4]{x}+1)(x^2+2x+2)}=\frac{1}{(1+1)(1+1)(1+2.1+2)}=\frac{1}{20}\)
d)
\(\lim_{x\to -2}\frac{\sqrt[3]{2x+12}+x}{x^2+2x}=\lim_{x\to -2}\frac{2x+12+x^3}{(\sqrt[3]{(2x+12)^2}-x\sqrt[3]{2x+12}+x^2).x(x+2)}\)
\(=\lim_{x\to -2}\frac{(x+2)(x^2-2x+6)}{(\sqrt[3]{(2x+12)^2}-x\sqrt[3]{2x+12}+x^2).x(x+2)}=\lim_{x\to -2}\frac{x^2-2x+6}{(\sqrt[3]{(2x+12)^2}-x\sqrt[3]{2x+12}+x^2).x}\)
\(=\frac{-7}{12}\)
Bài 2:
\(\lim\limits_{x\to 2}\frac{x-\sqrt{x+2}}{\sqrt{4x+1}-3}=\lim\limits_{x\to 2}\frac{x^2-x-2}{(x+\sqrt{x+2}).\frac{4x+1-9}{\sqrt{4x+1}+3}}=\lim\limits_{x\to 2}\frac{(x-2)(x+1)(\sqrt{4x+1}+3)}{(x+\sqrt{x+2}).4(x-2)}=\lim\limits_{x\to 2}\frac{(x+1)(\sqrt{4x+1}+3)}{4(x+\sqrt{x+2})}=\frac{9}{8}\)
Bài 3:
\(\lim\limits_{x\to 0-}\frac{1-\sqrt[3]{x-1}}{x}=-\infty \)
\(\lim\limits_{x\to 0+}\frac{1-\sqrt[3]{x-1}}{x}=+\infty \)
Bài 4:
\(\lim\limits_{x\to -\infty}\frac{x^2-5x+1}{x^2-2}=\lim\limits_{x\to -\infty}\frac{1-\frac{5}{x}+\frac{1}{x^2}}{1-\frac{2}{x^2}}=1\)
Bài 5:
\(\lim\limits_{x\to +\infty}\frac{2x^2-4}{x^3+3x^2-9}=\lim\limits_{x\to +\infty}\frac{\frac{2}{x}-\frac{4}{x^3}}{1+\frac{3}{x}-\frac{9}{x^3}}=0\)
Bài 6:
\(\lim\limits_{x\to 2- }\frac{2x-1}{x-2}=\lim\limits_{x\to 2-}\frac{2(x-2)+3}{x-2}=\lim\limits_{x\to 2-}\left(2+\frac{3}{x-2}\right)=-\infty \)
Bài 7:
\(\lim\limits _{x\to 3+ }\frac{8+x-x^2}{x-3}=\lim\limits _{x\to 3+}\frac{1}{x-3}.\lim\limits _{x\to 3+}(8+x-x^2)=2(+\infty)=+\infty \)
Bài 8:
\(\lim\limits _{x\to -\infty}(8+4x-x^3)=\lim\limits _{x\to -\infty}(-x^3)=+\infty \)
Bài 9:
\(\lim\limits _{x\to -1}\frac{\sqrt[3]{x}+1}{\sqrt{x^2+3}-2}=\lim\limits _{x\to -1}\frac{x+1}{\sqrt[3]{x^2}-\sqrt[3]{x}+1}.\frac{\sqrt{x^2+3}+2}{x^2+3-4}=\lim\limits _{x\to -1}\frac{x+1}{\sqrt[3]{x^2}-\sqrt[3]{x}+1}.\frac{\sqrt{x^2+3}+2}{(x-1)(x+1)}\)
\(\lim\limits _{x\to -1}\frac{\sqrt{x^2+3}+2}{(\sqrt[3]{x^2}-\sqrt[3]{x}+1)(x-1)}=\frac{-2}{3}\)
a) \(\lim\limits_{x\rightarrow0}\frac{\sqrt{1+2x}-1}{2x}=\lim\limits_{x\rightarrow0}\frac{2x}{2x\left(\sqrt{1+2x}+1\right)}=\lim\limits_{x\rightarrow0}\frac{1}{\sqrt{1+2x}+1}=\frac{1}{2}\)
b) \(\lim\limits_{x\rightarrow0}\frac{4x}{\sqrt{9+x}-3}=\lim\limits_{x\rightarrow0}\frac{4x\left(\sqrt{9+x}+3\right)}{x}=\lim\limits_{x\rightarrow0}[4\left(\sqrt{9+x}+3\right)=24\)
c) \(\lim\limits_{x\rightarrow2}\frac{\sqrt{x+7}-3}{x-2}=\lim\limits_{x\rightarrow2}\frac{x-2}{\left(x-2\right)\left(\sqrt{x+7}+3\right)}=\lim\limits_{x\rightarrow2}\frac{1}{\sqrt{x+7}+3}=\frac{1}{6}\)
d) \(\lim\limits_{x\rightarrow1}\frac{3x-2-\sqrt{4x^2-x-2}}{x^2-3x+2}=\lim\limits_{x\rightarrow1}\frac{\left(3x-2\right)^2-\left(4x^2-4x-2\right)}{(x^2-3x+2)\left(3x-2+\sqrt{4x^2-x-2}\right)}=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left(5x-6\right)}{\left(x-1\right)\left(x-2\right)\left(3x-2+\sqrt{4x^2-x-2}\right)}=\frac{1}{2}\\ \\\\ \\ \\ \\ \)
e)\(\lim\limits_{x\rightarrow1}\frac{\sqrt{2x+7}+x-4}{x^3-4x^2+3}=\lim\limits_{x\rightarrow1}\frac{2x+7-\left(x^2-8x+16\right)}{\left(x-1\right)\left(x^2-3x-3\right)\left(\sqrt{2x+7}-x+4\right)}=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left(x-9\right)}{\left(x-1\right)\left(x^2-3x-3\right)\left(\sqrt{2x+7}-x+4\right)}=\lim\limits_{x\rightarrow1}\frac{x-9}{\left(x^2-3x-3\right)\left(\sqrt{2x+7}-x+4\right)}=-8\)
f) \(\lim\limits_{x\rightarrow1}\frac{\sqrt{2x+7}-3}{2-\sqrt{x+3}}=\lim\limits_{x\rightarrow1}\frac{(2x-2)\left(2+\sqrt{x+3}\right)}{\left(1-x\right)\left(\sqrt{2x+7}+3\right)}=\lim\limits_{x\rightarrow1}\frac{-2\left(2+\sqrt{x+3}\right)}{\sqrt{2x+7}+3}=\frac{-4}{3}\)
g) \(\lim\limits_{x\rightarrow0}\frac{\sqrt{x^2+1}-1}{\sqrt{x^2+16}-4}=\lim\limits_{x\rightarrow0}\frac{x^2\left(\sqrt{x^2+16}+4\right)}{x^2\left(\sqrt{x^2+1}+1\right)}=4\)
h)
\(\lim\limits_{x\rightarrow4}\frac{\sqrt{x+5}-\sqrt{2x+1}}{x-4}=\lim\limits_{x\rightarrow4}\frac{\sqrt{x+5}-3}{x-4}+\lim\limits_{x\rightarrow4}\frac{3-\sqrt{2x+1}}{x-4}=\lim\limits_{x\rightarrow4}\frac{1}{\sqrt{x+5}+4}+\lim\limits_{x\rightarrow4}\frac{8-2x}{\left(x-4\right)\left(3+\sqrt{2x+1}\right)}=\frac{1}{7}-\frac{1}{3}=\frac{-4}{21}\)
k) \(\lim\limits_{x\rightarrow0}\frac{\sqrt{x+1}+\sqrt{x+4}-3}{x}=\lim\limits_{x\rightarrow0}\frac{\sqrt{x+1}-1}{x}+\lim\limits_{x\rightarrow0}\frac{\sqrt{x+4}-2}{x}=\lim\limits_{x\rightarrow0}\frac{1}{\sqrt{x+1}+1}+\lim\limits_{x\rightarrow0}\frac{1}{\sqrt{x+4}+2}=\frac{1}{2}+\frac{1}{4}=\frac{3}{4}\)
\(\lim\limits_{x\rightarrow-\infty}\frac{-x\sqrt{4x^2+3}}{2x-1}=\lim\limits_{x\rightarrow-\infty}\frac{x\sqrt{4+\frac{3}{x^2}}}{2-\frac{1}{x}}=-\infty\)
\(lim\frac{\sqrt{n}}{\sqrt{n+4}+\sqrt{n+3}}=lim\frac{1}{\sqrt{1+\frac{4}{n}}+\sqrt{1+\frac{3}{n}}}=\frac{1}{2}\)
\(lim\left(\frac{\left(n-2\right)^2-\left(3n^2+n-1\right)}{n-2+\sqrt{3n^2+n-1}}\right)=lim\frac{-2n^2-5n+5}{n-2+\sqrt{3n^2+n-1}}=lim\frac{-2n+5+\frac{5}{n}}{1-\frac{2}{n}+\sqrt{3+\frac{1}{n}-\frac{1}{n^2}}}=-\infty\)
\(\lim\limits_{x\rightarrow0}\frac{\left(x^3-2x+1\right)^{\frac{1}{3}}-1}{x^2+2x}=\lim\limits_{x\rightarrow0}\frac{\frac{1}{3}\left(3x-2\right)\left(x^3-2x+1\right)^{-\frac{2}{3}}}{2x+2}=-\frac{1}{3}\)
Vậy nó ko phải dạng vô định, cứ thay số trực tiếp
\(=\frac{2}{0}=+\infty\)
Nếu là mũ 3 thì nó là dạng 0/0 rút gọn được. Nên chắc là đề ghi nhầm đấy
\(\lim\limits_{x\rightarrow0}\frac{\left(\sqrt{1-2x}-1\right)\left(\sqrt{1-2x}+1\right)\left(\sqrt{5x+4}+2\right)}{\left(\sqrt{5x+4}-2\right)\left(\sqrt{5x+4}+2\right)\left(\sqrt{1-2x}+1\right)}\)
\(=\lim\limits_{x\rightarrow0}\frac{\left(-2x\right)\left(\sqrt{5x+4}+2\right)}{5x\left(\sqrt{1-2x}+1\right)}=\lim\limits_{x\rightarrow0}\frac{-2\left(\sqrt{5x+4}+2\right)}{5\left(\sqrt{1-2x}+1\right)}=-\frac{4}{5}\)