Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$(x^2-x+1)+(x^2-2x+3)+(x^2-3x+5)+....+(x^2-100x+199)=300$
$\Leftrightarrow (x^2+x^2+...+x^2)-(x+2x+3x+...+100x)+(1+3+5+...+199)=300$
$\Leftrightarrow 100x^2-5050x+10000=300$
$\Leftrightarrow 2x^2-101x+200=6$
$\Leftrightarrow 2x^2-101x+194=0$
$\Leftrightarrow (2x-97)(x-2)=0$
$\Rightarrow x=\frac{97}{2}$ hoặc $x=2$
a)\(f\left(x\right)=x^{100}+x^{99}+x^{98}+...+x+1\)chia cho \(g\left(x\right)=x-1\)
Ta có:\(f\left(x\right)=x^{100}+x^{99}+x^{98}+...+x+1\)
\(=x^{99}\left(x-1\right)+x^{98}\left(x-1\right)+...+\left(x-1\right)-99x+2\)
Vì x-1 chia hết cho x-1 nên \(x^{99}\left(x-1\right)+x^{98}\left(x-1\right)+...+\left(x-1\right)\)chia hết cho x-1
Do đó \(x^{99}\left(x-1\right)+x^{98}\left(x-1\right)+...+\left(x-1\right)-99x+2\) cha x-1 dư 2-99x
Vậy \(f\left(x\right)=x^{100}+x^{99}+x^{98}+...+x+1\)chia cho \(g\left(x\right)=x-1\) dư 2-99x
Không biết có đúng ko nữa
a/ Trước tiên ta chứng minh với mọi số tự nhiên \(n\ge1\)
\(x^n-1⋮\left(x-1\right)\)điều này dễ chứng minh nên mình bỏ qua nhé.
Ta có:
\(f\left(x\right)=x^{100}+x^{99}+...+x+1\)
\(=\left(x^{100}-1\right)+\left(x^{99}-1\right)+...+\left(x-1\right)+101\)
Vậy f(x) chia cho g(x) dư 101.
Câu 1:
a. \(\left(x-1\right)\left(x+2\right)-x^2+3=5\)
\(x^2+2x-x-2-x^2+3=5\)
\(x+1=5\)
\(x=4\)
b. \(\left(2x+1\right)\left(x-3\right)-2x\left(x+7\right)=100\)
\(2x^2-6x+x-3-2x^2-14x=100\)
\(-19x-3=100\)
\(x=\frac{103}{-19}\)
\(x=-7\)
c. \(\left(3x-1\right)\left(x+2\right)-\left(2-3x\right)\left(x+3\right)=12\)
\(3x^2+6x-x-2-\left(2x+6-3x^2-9x\right)=12\)
\(3x^2+6x-x-2-2x-6+3x^2+9x=12\)
\(6x^2+12x-8=12\)
\(6x^2+12x=20\)
Câu 2:
\(\left(x-5\right)\left(2x+3\right)-2x\left(x-3\right)+x+7\)
\(=2x^2+3x-10x-15-2x^2+6x+x+7\)
\(=-8\) (không phụ thuộc vào biến)
1> 3x(x-2)-2x(2x-1)=(1-x)(1+x)
⇔\(3x^2\)-6x-\(4x^2\)+2x=1-\(x^2\)
⇔-1\(x^2\) - 4x= 1- \(x^2\)
⇔ -1\(x^2\) -4x+ \(x^2\) = 1
⇔-4x=1
⇔ x = \(\dfrac{-1}{4}\)
Bài 1:
a) Ta có: \(\frac{4}{5}x-3=\frac{1}{5}x\left(4x-15\right)\)
\(\Leftrightarrow\frac{4x}{5}-3=\frac{4x^2}{5}-3x\)
\(\Leftrightarrow\frac{12x}{15}-\frac{45}{15}-\frac{12x^2}{15}+\frac{45x}{15}=0\)
Suy ra: \(12x-45-12x^2+45x=0\)
\(\Leftrightarrow-12x^2+57x-45=0\)
\(\Leftrightarrow-12x^2+12x+45x-45=0\)
\(\Leftrightarrow-12x\left(x-1\right)+45\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(-12x+45\right)=0\)
\(\Leftrightarrow-3\left(x-1\right)\left(4x-15\right)=0\)
mà \(-3\ne0\)
nên \(\left[{}\begin{matrix}x-1=0\\4x-15=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\4x=15\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{15}{4}\end{matrix}\right.\)
Vậy: Tập nghiệm \(S=\left\{1;\frac{15}{4}\right\}\)
b) Ta có: \(\left(x-3\right)-\frac{\left(x-3\right)\left(2x-5\right)}{6}=\frac{\left(x-3\right)\left(3-x\right)}{4}\)
\(\Leftrightarrow\left(x-3\right)-\frac{\left(x-3\right)\left(2x-5\right)}{6}+\frac{\left(x-3\right)^2}{4}=0\)
\(\Leftrightarrow\frac{12\left(x-3\right)}{12}-\frac{2\left(x-3\right)\left(2x-5\right)}{12}+\frac{3\left(x-3\right)^2}{12}=0\)
Suy ra: \(12\left(x-3\right)-2\left(2x^2-11x+15\right)+3\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow12x-36-4x^2+22x-30+3x^2-18x+27=0\)
\(\Leftrightarrow-x^2+16x-39=0\)
\(\Leftrightarrow-\left(x^2-16x+39\right)=0\)
\(\Leftrightarrow x^2-13x-3x+39=0\)
\(\Leftrightarrow x\left(x-13\right)-3\left(x-13\right)=0\)
\(\Leftrightarrow\left(x-13\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-13=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=13\\x=3\end{matrix}\right.\)
Vậy: Tập nghiệm S={3;13}
c) Ta có: \(\frac{\left(3x+1\right)\left(3x-2\right)}{3}+5\left(3x+1\right)=\frac{2\left(2x+1\right)\left(3x+1\right)}{3}+2x\left(3x+1\right)\)
\(\Leftrightarrow\frac{9x^2-3x-2}{3}+5\left(3x+1\right)-\frac{12x^2+10x+2}{3}-2x\left(3x+1\right)=0\)
\(\Leftrightarrow\frac{9x^2-3x-2-12x^2-10x-2}{3}-6x^2+13x+5=0\)
\(\Leftrightarrow\frac{-3x^2-13x-4}{3}+\frac{3\left(-6x^2+13x+5\right)}{3}=0\)
Suy ra: \(-3x^2-13x-4-18x^2+39x+15=0\)
\(\Leftrightarrow-21x^2+26x+11=0\)
\(\Leftrightarrow-21x^2-7x+33x+11=0\)
\(\Leftrightarrow-7x\left(3x+1\right)+11\left(3x+1\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(-7x+11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\-7x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\-7x=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{3}\\x=\frac{11}{7}\end{matrix}\right.\)
Vậy: Tập nghiệm \(S=\left\{-\frac{1}{3};\frac{11}{7}\right\}\)
a ) \(3x\left(x-1\right)-x\left(3x-2\right)=5\)
\(\Leftrightarrow3x^2-3x-3x^2+2x=5\)
\(\Leftrightarrow-x=5\)
\(\Leftrightarrow x=-5\)
Vậy phương trình có nghiệm x = - 5 .