Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(yz\left(y+z\right)+zx\left(z-x\right)-xy\left(x+y\right)\)
\(=yz\left(y+z\right)+zx\left(z-x\right)-xy\left[\left(y+z\right)-\left(z-x\right)\right]\)
\(=yz\left(y+z\right)+zx\left(z-x\right)-xy\left(y+z\right)+xy\left(z-x\right)\)
\(=y\left(y+z\right)\left(z-x\right)+x\left(z-x\right)\left(z-y\right)\)
\(=\left(z-x\right)\left(yz-xy+xz-xy\right)\)
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
\(2xyz+x^2y+xy^2+x^2z+xz^2+y^2z+yz^2\)
\(=x^2\left(y+z\right)+yz\left(y+z\right)+x\left(y^2+z^3\right)+2xyz\)
\(=\left(y+z\right)\left(x^2+yz\right)+x\left(y^2+z^2+2yz\right)\)
\(=\left(y+z\right)\left(x^2+yz\right)+x\left(y+z\right)^2\)
\(=\left(y+z\right)\left(x^2+yz\right)+xy+xz\)
\(=\left(y+z\right)\left[x\left(x+2\right)+y\left(x+2\right)\right]\)
\(=\left(y+z\right)\left(x+y\right)\left(x+2\right)\)
\(b,x^2\left(y-z\right)+y^2\left(z-y\right)+z^2\left(x-y\right)\)
\(=x^2\left(y-z\right)+y^2z-y^2x+z^2x-z^2y\)
\(=x^2\left(y-z\right)+yz\left(y-z\right)-x\left(y^2-z^2\right)\)
\(=\left(y-z\right)\left[x^2+yz-x\left(y+z\right)\right]\)
\(=\left(y-z\right)\left[x\left(x-y\right)-z\left(x-y\right)\right]\)
\(=\left(y-z\right)\left[\left(x-z\right)\left(x-y\right)\right]\)
a) \(2\left(x-y\right)+x^2-y^2\\ =2\left(x-y\right)+\left(x^2-y^2\right)\\ =2\left(x-y\right)+\left(x+y\right)\left(x-y\right)\\ =\left(x-y\right)\left(2+x-y\right)\)
b) \(x^3-4x^2-9x+36\\ =x^2\cdot x-4x^2-9x+36\\ =x^2\left(x-4\right)-9\left(x-4\right)\\=\left(x-4\right)\left(x^2-9\right)\\ =\left(x-4\right)\left(x-3\right)\left(x+3\right)\)
c) \(2x^2+2y^2-x^2z+2-y^2z-2\\ =2\left(x^2+y^2\right)-z\left(x^2+y^2\right)+\left(2-2\right)\\ =\left(x^2+y^2\right)\left(2-z\right)\)
d) \(x^3+y^3+2x^2-2xy+2y^2\\ =\left(x+y\right)\left(x^2-xy+y^2\right)+2\left(x^2-xy+y^2\right)\\ =\left(x^2-xy+y^2\right)\left(x+y+2\right)\)
e) \(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+2xyz\\ =x^2y+xy^2+xyz+x^2z+xz^2+xyz+y^2z+yz^2\\ =xy\left(x+y+z\right)+xz\left(x+y+z\right)+yz\left(y+z\right)\\ =\left(y+z\right)\left(x^2+xy+xz+yz\right)\\ =\left(y+z\right)\left(z+x\right)\left(x+y\right)\)
b \(x^8y^8+x^4y^4+1=x^8y^8+2x^4y^4+1-x^4y^4=\left(x^4y^4\right)^2+2x^4y^4+1-\left(x^2y^2\right)^2\)
\(=\left(x^4y^4+1\right)^2-\left(x^2y^2\right)^2=\left(x^4y^4-x^2y^2+1\right)\left(x^4y^4+x^2y^2+1\right)\)
c \(x^2y+xy^2+xz^2+x^2z+y^2z+yz^2+2xyz=\left(x^2y+x^2z+xyz+xy^2\right)+\left(xz^2+yz^2+xyz+y^2z\right)\)
\(=x\left(xy+xz+yz+y^2\right)+z\left(xz+yz+xy+y^2\right)=\left(x+z\right)\left(xy+xz+yz+y^2\right)\)
\(=\left(x+z\right)\left(x\left(y+z\right)+y\left(y+z\right)\right)=\left(x+z\right)\left(x+y\right)\left(y+z\right)\)
a \(3xyz+x\left(y^2+z^2\right)+y\left(x^2+z^2\right)+z\left(x^2+y^2\right)=3xyz+xy^2+xz^2+x^2y+yz^2+x^2z+y^2z\)
\(=\left(x^2y+x^2z+xyz\right)+\left(xy^2+xyz+y^2z\right)+\left(xyz+xz^2+yz^2\right)\)
\(=x\left(xy+xz+yz\right)+y\left(xy+xz+yz\right)+z\left(xy+xz+yz\right)=\left(x+y+z\right)\left(xy+xz+yz\right)\)
a, 6x4-9x3=3x3.(2x-3)
b, x2y2z+xy2z2+x2yz2
=xyz.(xy+yz+xz)
c, 2x(x-3)-(3-x)2
=2x(x-3)-(x-3)2
=(x-3)(2x-x+3)
=(x-3)(x+3)
d,y2(x2+y)-zx2-zy
=y2(x2+y)-z(x2+y)
=(x2+y)(y2-z)
\(\left(x^2+y^2+xy\right)^2-x^2y^2-y^2z^2-x^2z^2\)
= \(\left(x^2+y^2+xy\right)^2-\left(xy\right)^2-\left(y^2z^2+x^2z^2\right)\)
= \(\left(x^2+y^2+xy-xy\right)\left(x^2+y^2+xy+xy\right)-z^2\left(x^2+y^2\right)\)
= \(\left(x^2+y^2\right)\left(x^2+2xy+y^2\right)-z^2\left(x^2+y^2\right)\)
= \(\left(x^2+y^2\right)\left[\left(x+y\right)^2-z^2\right]\)
= \(\left(x^2+y^2\right)\left(x+y-z\right)\left(x+y+z\right)\)