\(\left(x+2\right)\left(x-3\right)\left(17x^2-17x+8\right)=\left(x+2\right)\left(x-3\right)\left...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2021

\(\left(x+2\right)\left(x-3\right)\left(17x^2-17x+8\right)=\left(x+2\right)\left(x-3\right)\left(x^2-17x+33\right)\)

=>\(17x^2-17x+8=x^2-17x+33\)

<=> \(16x^2-25=0\)

<=>\(\left(4x-5\right)\left(4x+5\right)=0\)

=> \(4x-5=0=>x=\dfrac{5}{4}\)

hoặc \(4x+5=0=>x=\dfrac{-5}{4}\)

28 tháng 5 2021

(x+2)(x−3)(17x2−17x+8)=(x+2)(x−3)(x2−17x+33)

\(\Leftrightarrow\)(x+2)(x−3)(17x2−17x+8) - (x+2)(x−3)(x2−17x+33) = 0

\(\Leftrightarrow\)(x+2)(x−3).[(17x2−17x+8)-(x2−17x+33)] = 0

\(\Leftrightarrow\)\(\left[{}\begin{matrix}\text{x+2 = 0}\\\text{x−3 = 0}\\\text{(17x^2−17x+8)-(x^2−17x+33) = 0}\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=-2\\x=3\\17x^2-17x+8-x^2+17x-33=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\\16x^2-25=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\\\left(4x-5\right)\left(4x+5\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\\4x-5=0\\4x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\\4x=5\\4x=-5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\\x=\dfrac{5}{4}\\x=\dfrac{-5}{4}\end{matrix}\right.\)

Vậy S = \(\left\{-2;\dfrac{-5}{4};\dfrac{5}{4};3\right\}\)

 

15 tháng 3 2020

i) (x - 1)(5x + 3) = (3x - 8)(x - 1)

<=> 5x2 + 3x - 5x - 3 = 3x2 - 3x - 8x + 8

<=> 5x2 - 2x - 3 = 3x2 - 11x + 8

<=> 5x2 - 2x - 3 - 3x2 + 11x - 8 = 0

<=> 2x2 + 9x - 11 = 0

<=> 2x2 + 11x - 2x - 11 = 0

<=> x(2x + 11) - (2x + 11) = 0

<=> (x - 1)(2x + 11) = 0

<=> x - 1 = 0 hoặc 2x + 11 = 0

<=> x = 0 hoặc x = -11/2

m) 2x(x - 1) = x2 - 1

<=> 2x2 - 2x = x2 - 1

<=> 2x2 - 2x - x2 + 1 = 0

<=> x2 - 2x + 1 = 0

<=> (x - 1)2 = 0

<=> x - 1 = 0

<=> x = 1

n) (2 - 3x)(x + 11) = (3x - 2)(2 - 5x)

<=> 2x + 22 - 3x2 - 33x = 6x - 15x2 - 4 + 10x

<=> -31x + 22 - 3x2 = 16x - 15x2 - 4

<=> 31x - 22 + 3x2 + 16x - 15x2 - 4 = 0

<=> 47x - 18 - 12x2 = 0

<=> -12x2 + 47x - 26 = 0

<=> 12x2 - 47x + 26 = 0

<=> 12x2 - 8x - 39x + 26 = 0

<=> 4x(3x - 2) - 13(3x - 2) = 0

<=> (4x - 13)(3x - 2) = 0

<=> 4x - 13 = 0 hoặc 3x - 2 = 0

<=> x = 13/4 hoặc x = 2/3

15 tháng 3 2020

i) (x - 1)(5x + 3) = (3x - 8)(x - 1)

<=> 5x2 + 3x - 5x - 3 = 3x2 - 3x - 8x + 8

<=> 5x2 - 2x - 3 = 3x2 - 11x + 8

<=> 5x2 - 2x - 3 - 3x2 + 11x - 8 = 0

<=> 2x2 + 9x - 11 = 0

<=> 2x2 + 11x - 2x - 11 = 0

<=> x(2x + 11) - (2x + 11) = 0

<=> (x - 1)(2x + 11) = 0

<=> x - 1 = 0 hoặc 2x + 11 = 0

<=> x = 0 hoặc x = -11/2

m) 2x(x - 1) = x2 - 1

<=> 2x2 - 2x = x2 - 1

<=> 2x2 - 2x - x2 + 1 = 0

<=> x2 - 2x + 1 = 0

<=> (x - 1)2 = 0

<=> x - 1 = 0

<=> x = 1

n) (2 - 3x)(x + 11) = (3x - 2)(2 - 5x)

<=> 2x + 22 - 3x2 - 33x = 6x - 15x2 - 4 + 10x

<=> -31x + 22 - 3x2 = 16x - 15x2 - 4

<=> 31x - 22 + 3x2 + 16x - 15x2 - 4 = 0

<=> 47x - 18 - 12x2 = 0

<=> -12x2 + 47x - 26 = 0

<=> 12x2 - 47x + 26 = 0

<=> 12x2 - 8x - 39x + 26 = 0

<=> 4x(3x - 2) - 13(3x - 2) = 0

<=> (4x - 13)(3x - 2) = 0

<=> 4x - 13 = 0 hoặc 3x - 2 = 0

<=> x = 13/4 hoặc x = 2/3

AH
Akai Haruma
Giáo viên
22 tháng 9 2020

a)

$A=(1^2-2^2)+(3^2-4^2)+....+(2003^2-2004^2)+2005^2$

$=(1-2)(1+2)+(3-4)(3+4)+....+(2003-2004)(2003+2004)+2005^2$

$=-(1+2)-(3+4)-...-(2003+2004)+2005^2$

$=-(1+2+3+...+2004)+2005^2=-\frac{2004.2005}{2}+2005^2$

$=2005^2-1002.2005=2005(2005-1002)=2011015$

b)

$B=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)(2^{32}+1)-2^{64}$

$=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)(2^{32}+1)-2^{64}$

$=(2^4-1)(2^4+1)(2^8+1)(2^{16}+1)(2^{32}+1)-2^{64}$

$=(2^8-1)(2^8+1)(2^{16}+1)(2^{32}+1)-2^{64}$

$=(2^{16}-1)(2^{16}+1)(2^{32}+1)-2^{64}$

$=(2^{32}-1)(2^{32}+1)-2^{64}$

$=2^{64}-1-2^{64}=-1$

AH
Akai Haruma
Giáo viên
22 tháng 9 2020

c) Do $x=16$ nên $x-16=0$

$R(x)=x^4-17x^3+17x^2-17x+20$

$=(x^4-16x^3)-(x^3-16x^2)+x^2-16x-x+20$

$=x^3(x-16)-x^2(x-16)+x(x-16)-x+20$

$=x^3.0-x^2.0+x.0-x+20=-x+20=-16+20=4$

d) Do $x=12$ nên $x-12=0$. Khi đó:

$S(x)=(x^{10}-12x^9)-(x^9-12x^8)+(x^8-12x^7)-....+(x^2-12x)-x+10$

$=x^9(x-12)-x^8(x-12)+x^7(x-12)-....+x(x-12)-x+10$

$=(x-12)(x^9-x^8+x^7-....+x)-x+10$

$=0-x+10=-x+10=-12+10=-2$

14 tháng 2 2016

moi hok lop 6

14 tháng 2 2016

Xem lại cái dề ban ơi cau 1 dấy

 

17 tháng 11 2019

Bài 1:

\(A=a^2b^2\left(b-a\right)+b^2c^2\left(c-b\right)+c^2a^2\left(a-c\right)\)

\(=a^2b^2\left(b-c+c-a\right)+b^2c^2\left(c-a+a-b\right)+c^2a^2\left(a-c\right)\)

\(=a^2b^2\left(b-c\right)+a^2b^2\left(c-a\right)+b^2c^2\left(c-a\right)+b^2c^2\left(a-b\right)+c^2a^2\left(a-c\right)\)

\(=\left(c-a\right)\left(a^2b^2+b^2c^2-c^2a^2\right)+b^2\left[a^2\left(b-c\right)+c^2\left(a-b\right)\right]\)

\(=\left(c-a\right)\left(a^2b^2+b^2c^2-c^2a^2\right)+b^2\left(c-a\right)\left(ac-bc-ba\right)\)

\(=\left(c-a\right)\left[a^2b^2+b^2c^2-c^2a^2+b^2\left(ac-bc-ba\right)\right]\)

NV
18 tháng 11 2019

2/ \(\left(17x-5\right)^2+2\left(17x-5\right)\left(3x-2\right)+\left(3x-2\right)^2=0\)

\(\Leftrightarrow\left(17x-2+3x-2\right)^2=0\)

\(\Leftrightarrow20x-4=0\)

\(\Rightarrow x=\frac{1}{5}\)

a: \(\Leftrightarrow8x+16-5x^2-10x+4x^2-4x-8+2\left(x^2-4\right)=0\)

\(\Leftrightarrow-x^2-6x+8+2x^2-8=0\)

=>x^2-6x=0

=>x(x-6)=0

=>x=6 hoặc x=0

b: \(\Leftrightarrow24x^2+7x-6-4x^2-23x-28=10x^2+3x-1-33\)

\(\Leftrightarrow20x^2-16x-34-10x^2-3x+34=0\)

=>\(10x^2-19x=0\)

=>x(10x-19)=0

=>x=0 hoặc x=19/10

1 tháng 10 2019

â) viết lại biểu thức bên trái = (x2+5x-3)(x2-2x-4)+(14+a)x+b-12

Để là phép chia hết thì số dư =0

Số dư chính là (14+a)x+b-12=0 => a+14=0 và b-12=0 <=>a=-14 và b=12

b) làm tương tự phân tích vế trái thành (x3-2x2+4)(x2+9x+18)+(a+32)x2+(b-36)x

số dư là (a+32)x2+(b-36)x=0 =>a=-32 và b=36

c) Tương tự (x2-1)4x+(a+4)x+b

số dư là (a+4)x+b =2x-3 =>a+4=2 và b=-3 <=>a=-2 và b=-3

a: \(4\left(x+5\right)\left(x+6\right)\left(x+10\right)\left(x+12\right)-3x^2\)

\(=4\left(x^2+60+17x\right)\left(x^2+60+16x\right)-3x^2\)

\(=\left(2x^2+120+34x\right)\left(2x^2+120+32x\right)-3x^2\)

\(=\left(2x^2+120\right)^2+66x\left(2x^2+120\right)+1085x^2\)

\(=\left(2x^2+120\right)^2+31x\left(2x^2+120\right)+35x\left(2x^2+120\right)+1085x^2\)

\(=\left(2x^2+120\right)\left(2x^2+31x+120\right)+35x\left(2x^2+120+31x\right)\)

\(=\left(2x^2+31x+120\right)\left(2x^2+35x+120\right)\)

b: \(x^4-8x+63\)

\(=x^4+4x^3+9x^2-4x^3-16x^2-36x+7x^2+28x+63\)

\(=\left(x^2+4x+9\right)\left(x^2-4x+7\right)\)