Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x - 3)⁴ = (x - 3)²
(x - 3)⁴ - (x - 3)² = 0
(x - 3)².[(x - 3)² - 1] = 0
(x - 3)².(x² - 6x + 9 - 1) = 0
(x - 3)²(x² - 6x + 8) = 0
(x - 3)²(x² - 2x - 4x + 8) = 0
(x - 3)²[(x² - 2x) - (4x - 8)] = 0
(x - 3)²[x(x - 2) - 4(x - 2)] = 0
(x - 3)²(x - 2)(x - 4) = 0
(x - 3)² = 0 hoặc x - 2 = 0 hoặc x - 4 = 0
*) (x - 3)² = 0
x - 3 = 0
x = 3
*) x - 2 = 0
x = 2
*) x - 4 = 0
x = 4
Vậy x = 2; x = 3; x = 4
a) \(3\left(4-2x\right)-2\left(x+3\right)=12-7x\)
\(\Leftrightarrow\)\(12-6x-2x-6=12-7x\)
\(\Leftrightarrow\)\(6-8x=12-7x\)
\(\Leftrightarrow\)\(x=-6\)
Vậy...
b) \(\left|16+\right|3\left(x-2\right)||-5=20\)
\(\Leftrightarrow\)\(\left|16+\right|3\left(x-2\right)||=25\)(1)
Ta thấy: \(\left|3\left(x-2\right)\right|\ge0\)\(\Rightarrow\)\(16+\left|3\left(x-2\right)\right|>0\)
nên từ (1) \(\Rightarrow\) \(16+\left|3\left(x-2\right)\right|=25\)
\(\Leftrightarrow\)\(\left|3\left(x-2\right)\right|=9\)
\(\Leftrightarrow\) \(\orbr{\begin{cases}3\left(x-2\right)=9\\3\left(x-2\right)=-9\end{cases}}\)
\(\Leftrightarrow\) \(\orbr{\begin{cases}x-2=3\\x-2=-3\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=5\\x=-1\end{cases}}\)
Vậy....
c) \(\left|-5-3^2\right|-||3x+5|-7.2^3|=3^9:3^7\)
\(\Leftrightarrow\)\(14-||3x+5|-56|=9\)
\(\Leftrightarrow\)\(||3x+5|-56|=5\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}\left|3x+5\right|-56=5\\\left|3x+5\right|-56=-5\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}\left|3x+5\right|=61\\\left|3x+5\right|=51\end{cases}}\)
đến đây bn giải tiếp nhé
\(\left(\frac{1}{x}-\frac{2}{3}\right)^2-\frac{1}{16}=0\)
\(\Leftrightarrow\left(\frac{1}{x}-\frac{2}{3}\right)^2-\left(\frac{1}{4}\right)^2=0\)
\(\Leftrightarrow\left(\frac{1}{x}-\frac{2}{3}+\frac{1}{4}\right)\left(\frac{1}{x}-\frac{2}{3}-\frac{1}{4}\right)=0\)
\(\Leftrightarrow\left(\frac{1}{x}-\frac{5}{12}\right)\left(\frac{1}{x}-\frac{11}{12}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{1}{x}-\frac{5}{12}=0\\\frac{1}{x}-\frac{11}{12}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{1}{x}=\frac{5}{12}\\\frac{1}{x}=\frac{11}{12}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{12}{11}\\x=\frac{12}{5}\end{cases}}\)
Vậy....
\(\left(\frac{1}{x}-\frac{2}{3}\right)^2-\frac{1}{16}=0\)
\(\Rightarrow\left(\frac{1}{x}-\frac{2}{3}\right)^2=\frac{1}{16}\)
\(\Rightarrow\left(\frac{1}{x}-\frac{2}{3}\right)^2=\left(\frac{1}{4}\right)^2\)
\(\Rightarrow\frac{1}{x}-\frac{2}{3}=\frac{1}{4}\)
\(\Rightarrow\frac{1}{x}=\frac{11}{12}\)
\(\Rightarrow x=\frac{11}{12}\)
a,\(\left(x-3\right).\left(2y+1\right)=7\)
Vì \(x;y\inℤ=>x-3;2y+1\inℤ\)
\(=>x-3;2y+1\inƯ\left(7\right)\)
Nên ta có bảng sau
x-3 | 1 | 7 | -7 | -1 |
2y+1 | 7 | 1 | -1 | -7 |
x | 4 | 10 | -4 | 2 |
y | 3 | 0 | -1 | -4 |
Vậy ...
b,\(A=-126-\left(4^2-5\right)^2+870:29\)
\(=-126-\left(16-5\right)^2+30\)
\(=-126-11^2+30\)
\(=-247+30=-217\)
\(C=\left(x-5\right)^2+10\)
Ta có: \(\left(x-5\right)^2\ge0\forall x\)
\(\Rightarrow C=\left(x-5\right)^2+10\ge10\forall x\)
Dấu \("="\) xảy ra khi: \(x-5=0\Leftrightarrow x=5\)
Vậy \(Min_C=10\) khi \(x=5\).
.........................
= \(\frac{1}{2}\). ( \(\frac{2}{1.3}\) + \(\frac{2}{3.5}\) + \(\frac{2}{5.7}\) ... + \(\frac{2}{x.\left(x+2\right)}\) )
= \(\frac{1}{2}\) . ( 1 - \(\frac{1}{3}\) + \(\frac{1}{3}\) - \(\frac{1}{5}\) + \(\frac{1}{5}\) - \(\frac{1}{7}\) + ... + \(\frac{1}{x}\)- \(\frac{1}{x+2}\) )
= ................
Bạn tự làm tiếp nhé ! Chúc bạn học tốt :)
mk làm ở bên trên rồi đóa