Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(\left\{{}\begin{matrix}x+2y=1\\2x^2-5xy=48\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=1-2y\left(1\right)\\2x^2-5xy=48\left(2\right)\end{matrix}\right.\)
Thay (1) vào (2)\(\Leftrightarrow2\left(1-2y\right)^2-5\left(1-2y\right)y=48\Leftrightarrow2\left(1-4y+4y^2\right)-5y+10y^2=48\Leftrightarrow2-8y+8y^2-5y+10y^2=48\Leftrightarrow18y^2-13y-46=0\Leftrightarrow\left(y-2\right)\left(18y+23\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}y=2\\y=-\frac{23}{18}\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=-3\\x=\frac{32}{9}\end{matrix}\right.\)
Vậy (x;y)={(\(-3;2\));(\(\frac{32}{9};-\frac{23}{18}\))}
Bài 2:
a) Đặt a=x2-1(a\(\ge-1\))
Vậy pt\(\Leftrightarrow a^2-4a=5\Leftrightarrow a^2-4a-5=0\Leftrightarrow\left(a-5\right)\left(a+1\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}a=5\\a=-1\end{matrix}\right.\)(tm)
TH1: a=5\(\Leftrightarrow x^2-1=5\Leftrightarrow x^2=6\Leftrightarrow x=\pm\sqrt{6}\)
TH2: a=-1\(\Leftrightarrow x^2-1=-1\Leftrightarrow x^2=0\Leftrightarrow x=0\)
Vậy S={\(-\sqrt{6};0;\sqrt{6}\)}
b) \(\left(x+2\right)^2-3x-5=\left(1-x\right)\left(1+x\right)\Leftrightarrow x^2+4x+4-3x-5=1-x^2\Leftrightarrow2x^2+x-2=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=\frac{-1+\sqrt{17}}{4}\\x=\frac{-1-\sqrt{17}}{4}\end{matrix}\right.\)
Vậy S={\(\frac{-1+\sqrt{17}}{4};\frac{-1-\sqrt{17}}{4}\)}
c) Đặt a=\(x^2-3x+2\)
Vậy pt\(\Leftrightarrow\left(a+2\right)a=3\Leftrightarrow a^2+2a-3=0\Leftrightarrow\left(a-1\right)\left(a+3\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}a=1\\a=-3\end{matrix}\right.\)(tm)
TH1:\(a=1\Leftrightarrow x^2-3x+2=1\Leftrightarrow x^2-3x+1=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=\frac{3+\sqrt{5}}{2}\\x=\frac{3-\sqrt{5}}{2}\end{matrix}\right.\)
TH2: a=-3\(\Leftrightarrow x^2-3x+2=-3\Leftrightarrow x^2-3x+5=0\)(vô nghiệm)
Vậy S=\(\left\{\frac{3+\sqrt{5}}{2};\frac{3-\sqrt{5}}{2}\right\}\)
\(x^4-4x^3-2x^2-16x-24=0\)
Giả sử đa thức được tách về dạng:
\(\left(x^2+ax+b\right)\left(x^2+cx+d\right)\)
Nhân phá ra ta được:
\(x^4+\left(a+c\right)x^3+\left(b+d+ac\right)x^2+\left(ad+bc\right)x+bd\)
Đồng nhất hệ số với vế trái: \(\Rightarrow\left\{{}\begin{matrix}a+c=-4\\b+d+ac=-2\\ad+bc=-16\\bd=-24\end{matrix}\right.\)
Giải hệ pt này rất tốn thời gian, nên ta sẽ xử lý tiếp bằng cách dự đoán
\(bd=-24\) nên có thể \(\left(b;d\right)=\left(2;-12\right);\left(-2;12\right);\left(4;-6\right);\left(-4;6\right);\left(1;-24\right);\left(-1;24\right)\)
Thay vào 2 pt đầu và sử dụng Viet đảo kiểm tra thấy chỉ có cặp \(\left(4;-6\right)\) thỏa mãn, khi đó (a;c)=(0;-4)
Vậy \(x^4-4x^3-2x^2-16x-24=0\)
\(\Leftrightarrow\left(x^2+4\right)\left(x^2-4x-6\right)=0\)
Tới đây ez
Cách 2: sử dụng casio
Chọn MODE-7 chế độ Table, nhập hàm \(F\left(X\right)=X^4-4X^3-2X^2-16X-24=0\)
Sau đó "=", START chọn -10 rồi "=", end chọn 10 rồi "=", step chọn 1 rồi "="
Sử dụng nút di chuyển "replay" lên xuống kiểm tra cột F(X), tìm vị trí nào F(X) đổi dấu thì nhìn sang cột X bên trái
Ví dụ ở đây ta thấy F(X) đối dấu lần 1 từ 48 sang -5 tương ứng X khoảng giữa -2 và -1, như vậy pt có 1 nghiệm X nằm giữa -2 và -1
Tiếp tục kiểm tra, lại thấy 1 nghiệm X giữa 5 và 6
Vậy là đủ, bấm MODE-1 thoát ra, nhập tiếp \(X^4-4X^3-2X^2-16X-24\) ngoài màn hình MODE-1 rồi "="
Sau đó shift+SOLVE
Máy hỏi Solve for X thì ta chọn 1 số bất kì giữa -2 và -1, ví dụ -1.5 rồi "="
Nó sẽ cho 1 nghiệm rất xấu, ko vấn đề, bấm shift+RCL (phím nằm trên số 7) rồi phím "-" (chữ A đỏ) để máy gán nghiệm vào biến A
Bấm AC, rồi bấm nút replay đi lên đến khi xuất hiện pt nhập ban đâu, tiếp tục shift+SOLVE, lần này SOLVE forX ta chọn 1 số nằm giữa 4 và 5 (ví dụ 4.5)
Được 1 nghiệm nữa, lại shift-RCL- rồi nút B đỏ (nằm kế nút A đỏ) để máy gán nghiệm vào biến B
Nhấn AC, rồi nhập alpha A+alpha B rồi "="
Nó ra 4
Tiếp tục nhập \(A\times B\) rồi "="
Nó ra -6
Vậy theo Viet đảo, A và B là nghiệm của: \(x^2-4x-6\)
Vậy thì \(x^4-4x^3-2x^2-16x-24\) có 1 nhân tử là \(x^2-4x-6\)
Tiến hành chia đa thức \(x^4-4x^3-2x^2-16x-24\) cho \(x^2-4x-6\) ta được \(x^2+4\)
Vậy \(x^4-4x^3-2x^2-16x-24=\left(x^2+4\right)\left(x^2-4x-6\right)\)
bài toán coi như xong
a) \(3x^3+6x^2-4x=0\) \(\Leftrightarrow\) \(x\left(3x^2+6x-4\right)=0\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=0\\3x^2+6x-4=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=0\\\left\{{}\begin{matrix}x=\dfrac{-3+\sqrt{21}}{3}\\x=\dfrac{-3-\sqrt{21}}{3}\end{matrix}\right.\end{matrix}\right.\)
vậy phương trình có 2 nghiệm \(x=0;x=\dfrac{-3+\sqrt{21}}{3};x=\dfrac{-3-\sqrt{21}}{3}\)
=>(x^2-3x)^2+3(x^2-3x)+2=2
=>(x^2-3x)(x^2-3x+3)=0
=>x^2-3x=0
=>x=0 hoặc x=3