\(\left|x-5\right|+\left|1-x\right|=\frac{12}{\left|y+1\right|+3}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2019

Ta co:

\(\left|x-5\right|+\left|1-x\right|\ge\left|x-5+1-x\right|=4\)

Dau "=" xay ra khi:

\(1\le x\le5\)

\(\left|y+1\right|\ge0\Rightarrow\left|y+1\right|+3\ge3\Rightarrow\frac{12}{\left|y+1\right|+3}\le4\)

Dau "=" xay ra khi:

\(\left|y+1\right|=0\Leftrightarrow y=-1\)

Ma \(\left|x-5\right|+\left|1-x\right|=\frac{12}{\left|y+1\right|+3}\)

\(\Rightarrow\left|x-5\right|+\left|1-x\right|=\frac{12}{\left|y+1\right|+3}=4\)

Vay \(1\le x\le5;y=-1\)

10 tháng 11 2016

Bài 1:

\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)

Ta thấy:

\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)

\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)

\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)

\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\frac{10}{11}=0\)

\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)

 

 

10 tháng 11 2016

Bài 2:

Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)

\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)

25 tháng 7 2017

\(=\frac{16}{5}.\frac{15}{16}-\left(\frac{3}{4}+\frac{2}{7}\right):\left(\frac{-29}{28}\right)\)

\(=3-\left(\frac{21}{28}+\frac{8}{28}\right):\left(\frac{-29}{28}\right)\)

\(=3-\left(\frac{29}{28}\right).\left(\frac{-28}{29}\right)\)

\(=3-\left(-1\right)\)

\(=4\)

b)   \(=\left(\frac{1}{4}+\frac{25}{2}-\frac{5}{16}\right):\left(12-\frac{7}{12}:\left(\frac{3}{8}-\frac{1}{12}\right)\right)\)

       \(=\left(\frac{4}{16}+\frac{200}{16}-\frac{5}{16}\right):\left(12-\frac{7}{12}:\left(\frac{3.3}{2.3.4}-\frac{2}{2.3.4}\right)\right)\)

     \(=\left(\frac{199}{16}\right):\left(12-\frac{7}{12}:\left(\frac{9}{24}-\frac{2}{24}\right)\right)\)

      \(=\frac{199}{16}:\left(12-\frac{7}{12}.\frac{24}{7}\right)\)

    \(=\frac{199}{16}:\left(12-2\right)\)

\(=\frac{199}{16}:10\)

\(=\frac{199}{160}\)

c)   \(\left(\frac{-3}{5}+\frac{5}{11}\right):\frac{-3}{7}+\left(\frac{-2}{5}+\frac{6}{5}\right):\frac{-3}{7}\)

\(\left(\frac{-33}{55}+\frac{25}{55}\right):\frac{-3}{7}+\left(\frac{4}{5}\right):\frac{-3}{7}\)

\(\left(\frac{-8}{55}\right).\frac{-7}{3}+\frac{4}{5}.\frac{-7}{3}\)

\(\frac{-7}{3}\left(\frac{-8}{55}+\frac{4}{5}\right)\)

\(\frac{-7}{3}.\frac{36}{55}=\frac{-84}{55}\)

     

25 tháng 7 2017

giờ mk phải đi ngủ r mai mk làm cho 

13 tháng 7 2016

\(\frac{2}{\left(x-1\right)\left(x-3\right)}+\frac{5}{\left(x-3\right)\left(x-8\right)}+\frac{12}{\left(x-8\right)\left(x-20\right)}-\frac{1}{x-20}=-\frac{3}{4}\)

\(=\frac{1}{x-1}-\frac{1}{x-3}+\frac{1}{x-3}-\frac{1}{x-8}+\frac{1}{x-8}-\frac{1}{x-20}-\frac{1}{x-20}=-\frac{3}{4}\)

\(=\frac{1}{x-1}-\frac{2}{x-20}=-\frac{3}{4}\)

\(\frac{-x-18}{\left(x-1\right)\left(x-20\right)}=-\frac{3}{4}\)

\(\frac{-x-18}{x^2-21x+20}=\frac{-3}{4}\)

\(\frac{x+18}{x^2-21x+20}=\frac{3}{4}\)

\(4\left(x+18\right)=3\left(x^2-21x+20\right)\)

\(4x+72=3x^2-63x+60\)

\(3x^2-63x-4x=72-60\)

\(3x^2-67x=12\)

\(x\left(2x-67\right)=12\)

\(\Rightarrow x;2x-67\inƯ\left(12\right)=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)

Mà 2x - 67 lẻ.

Ta có bảng sau:

2x-67       2x             x            (2x - 67 ) . x
-36432-96 ( loại)
-16633-33 ( loại )
1683434 ( loại)
37035105(loại)

Do đó không có \(x\)thỏa mãn.

4 tháng 7 2017

a) \(\left|x\right|+\frac{1}{4}=\frac{1}{5}\)

    \(\left|x\right|=\frac{1}{5}-\frac{1}{4}\)

      \(\left|x\right|=\frac{-1}{20}\)(vô lý vì \(\left|x\right|\ge0\)với mọi x . Mà \(\frac{-1}{20}\)>0 )

Vậy không tồn tại x

b)\(\left|x+2\right|-\frac{1}{12}=\frac{1}{4}\)

     \(\left|x+2\right|=\frac{1}{4}+\frac{1}{12}\)

      \(\left|x+2\right|=\frac{1}{3}\)

       \(\Rightarrow x+2\varepsilon\left\{\frac{1}{3};\frac{-1}{3}\right\}\)

+)\(x+2=\frac{1}{3}\Rightarrow x=\frac{-5}{3}\)                                                            +)\(x+2=\frac{-1}{3}\Rightarrow x=\frac{-7}{3}\)

   Vậy \(x=\frac{-5}{3}\)hoặc \(x=\frac{-7}{3}\)

c)\(\left|x+5\right|=\frac{1}{7}-\left|\frac{4}{3}-\frac{1}{6}\right|\)

    \(\left|x+5\right|=\frac{1}{7}-\frac{7}{6}\)

     \(\left|x+5\right|=\frac{-43}{42}\)( vô lý vì \(\left|x+5\right|\ge0\)với mọi x , mà \(\frac{-43}{42}< 0\))

Vậy không tồn tại x

d)\(\left|x+\frac{5}{6}\right|=\left|\frac{1}{5}-\frac{2}{3}\right|+\frac{-3}{4}\)

    \(\left|x+\frac{5}{6}\right|=\frac{7}{15}+\frac{-3}{4}\)

     \(\left|x+\frac{5}{6}\right|=\frac{-17}{60}\)( Vô lý vì \(\left|x+\frac{5}{6}\right|\ge0\)với mọi x mà \(\frac{-17}{60}< 0\))

Vậy không tồn tại x