Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{2015}-\frac{1}{2016}\)
\(A=\left(1+\frac{1}{3}+\frac{1}{5}+.....+\frac{1}{2015}\right)-\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{2016}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2015}+\frac{1}{2016}\right)-2\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{2016}\right)\)
\(A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2015}+\frac{1}{2016}-\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{1008}\right)\)
\(A=\frac{1}{1009}+\frac{1}{1010}+.....+\frac{1}{2016}\)
Khi đó \(\frac{\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2015}-\frac{1}{2016}\right)}{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}=\frac{A}{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}=\frac{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}=1\)
Bạn xem lời giải của mình nhé:
Giải:
Bài 2:
Ta xét A = \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\)
\(=1+\left(\frac{1}{2}-1\right)+\frac{1}{3}+\left(\frac{1}{4}-\frac{2}{4}\right)+...+\frac{1}{2015}+\left(\frac{1}{2016}-\frac{2}{2016}\right)\\ =1+\frac{1}{2}-1+\frac{1}{3}+\frac{1}{4}-\frac{1}{2}+...+\frac{1}{2015}+\frac{1}{2016}-\frac{1}{1008}\)
\(=\left(1-1\right)+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+...+\left(\frac{1}{1008}-\frac{1}{1008}\right)+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\)
\(=\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\)
\(\Rightarrow\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\right):\left(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\right)\\ =\left(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\right):\left(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\right)\\ =1\)
Chúc bạn học tốt!
Ta có :
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{2016}\right)\)
\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{2015}{2016}\)
\(A=\frac{2.3.4.....2015}{2.3.4.....2015}.\frac{1}{2016}\)
\(A=\frac{1}{2016}\)
Vậy \(A=\frac{1}{2016}\)
Chúc bạn học tốt ~
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)..\left(1-\frac{1}{2016}\right)\)
\(\Rightarrow A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2015}{2016}\)
\(\Rightarrow A=\frac{1.2.3..2015}{2.3.4..2016}\)
\(\Rightarrow A=\frac{1}{2016}\)
\(a)\) Đặt \(A=\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2013}\) ta có :
\(A=\frac{2014-1}{2014}+\frac{2015-1}{2015}+\frac{2013+2}{2013}\)
\(A=\frac{2014}{2014}-\frac{1}{2014}+\frac{2015}{2015}-\frac{1}{2015}+\frac{2013}{2013}+\frac{2}{2013}\)
\(A=1-\frac{1}{2014}+1-\frac{1}{2015}+1+\frac{2}{2013}\)
\(A=\left(1+1+1\right)-\left(\frac{1}{2014}+\frac{1}{2015}-\frac{2}{2013}\right)\)
\(A=3-\left[\frac{1}{2014}+\frac{1}{2015}-\left(\frac{1}{2013}+\frac{1}{2013}\right)\right]\)
\(A=3-\left[\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2013}-\frac{1}{2013}\right]\)
\(A=3-\left[\left(\frac{1}{2014}-\frac{1}{2013}\right)+\left(\frac{1}{2015}-\frac{1}{2013}\right)\right]\)
Mà :
\(\frac{1}{2014}< \frac{1}{2013}\)\(\Rightarrow\)\(\frac{1}{2014}-\frac{1}{2013}< 0\)
\(\frac{1}{2015}< \frac{1}{2013}\)\(\Rightarrow\)\(\frac{1}{2015}-\frac{1}{2013}< 0\)
Từ (1) và (2) suy ra : \(\left(\frac{1}{2014}-\frac{1}{2013}\right)+\left(\frac{1}{2015}-\frac{1}{2013}\right)< 0\) ( cộng theo vế )
\(\Rightarrow\)\(-\left[\left(\frac{1}{2014}-\frac{1}{2013}\right)+\left(\frac{1}{2015}-\frac{1}{2013}\right)\right]>0\)
\(\Rightarrow\)\(A=3-\left[\left(\frac{1}{2014}-\frac{1}{2013}\right)+\left(\frac{1}{2015}-\frac{1}{2013}\right)\right]>3\) ( cộng hai vế cho 3 )
\(\Rightarrow\)\(A>3\) ( điều phải chứng minh )
Vậy \(A>3\)
Chúc đệ học tốt ~
c,
\(C=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{9999}{10000}\)
vì \(\frac{1}{2}< \frac{2}{3}\)
\(\frac{3}{4}< \frac{4}{5}\)
\(\frac{5}{6}< \frac{6}{7}\)
.............................
\(\frac{9999}{10000}< \frac{10000}{10001}\)
nên \(C^2< \frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{10000}{10001}\)
\(\Rightarrow C^2< \frac{1}{10001}< \frac{1}{10000}\)
\(\Rightarrow C< \frac{1}{100}\)
bt lm mỗi một câu :v
,mình sửa lại đề:
\(\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2013}< 3\)
xóa các chữ số ở tử và mẫu: 2014 và 2014,2015 và 2015
=\(\frac{2013}{2013}\)
=\(1\)
vì \(1>3\) nên \(\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2013}>3\)
a) -1 - 2 + 3 + 4 - 5 - 6 + 7 + 8 - 9 - 10 + 11 + 12 - ... - 2013 - 2014 + 2015 + 2016
= ( -1 - 2 + 3 + 4 ) - ( 5 + 6 - 7 - 8 ) - ( 9 + 10 - 11 - 12 ) - .......... - ( 2013 + 2014 - 2015 - 2016 )
= 4 - ( -4 ) - ( -4 ) - ......... - ( -4 )
= 4 + 4 + 4 +....... + 4
= { [ ( 2016 - 1 ) : 1 + 1 ] : 4 } . 4
= { [ 2015 : 1 + 1 ] : 4 } . 4
= { 2016 : 4 } . 4
= 504 . 4
= 2016
b) \(\left(\frac{1}{2}-1\right):\left(\frac{1}{3}-1\right):\left(\frac{1}{4}-1\right):\left(\frac{1}{5}-1\right):.........:\left(\frac{1}{100}-1\right)\)
\(=\frac{-1}{2}:\frac{-2}{3}:\frac{-3}{4}:\frac{-4}{5}:......:\frac{-99}{100}\)
\(=\frac{-1}{2}.\frac{3}{-2}.\frac{4}{-3}.\frac{5}{-4}.......\frac{100}{-99}\)
\(=\frac{-1.3.4........100}{2.2.3.4......99}\)
\(=\frac{-1.100}{2.2}\)
\(=\frac{-100}{4}\)
\(=-25\)
a) -1-2+3+4-5-6+7+8+...+2016=-3+3-7+7-...-2016+2016=0
b) \(\left(\frac{1}{2}-1\right):...:\left(\frac{1}{100}-1\right)=\frac{-1}{2}:\frac{-2}{3}:\frac{-3}{4}:...:\frac{-99}{100}\)
\(=\)\(\frac{-1}{2}.\frac{-3}{2}.....\frac{-100}{99}=\frac{-1}{2}.\left(-50\right)=25\)
x | 7 | 9 | |||
x2 | 49 | 81 | |||
x2-49 | - | 0 | + | + | + |
x2-81 | - | - | - | 0 | + |
A | + | 0 | - | 0 | + |
dựa vào bảng ta có khi 7<x<9 thì A<0 vậy 7<x<9
b, ta có : \(\frac{2015}{1}\)+\(\frac{2014}{2}\)+\(\frac{2013}{3}\)+......+\(\frac{1}{2015}\)
=1+1+1+1......+1+\(\frac{2014}{2}\)+\(\frac{2013}{3}\)+.......+\(\frac{1}{2015}\)
(2015 số 1)
=1+(1+\(\frac{2014}{2}\))+(1+\(\frac{2013}{3}\))+........+(1+\(\frac{1}{2015}\))
=\(\frac{2016}{2016}\)+\(\frac{2016}{2}\)+\(\frac{2016}{3}\)+.........+\(\frac{2016}{2015}\)
=2016(\(\frac{1}{2016}\)+\(\frac{1}{2}\)+\(\frac{1}{3}\)+.........+\(\frac{1}{2015}\))
b)
\(x-2.\left(\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}\right)=\frac{16}{9}\)
\(x-2\cdot\left(\frac{1}{3}-\frac{1}{9}\right)=\frac{16}{9}\)
\(x-2=\frac{16}{9}:\left(\frac{1}{3}-\frac{1}{9}\right)\)
\(x-2=8\)
=> x = 10
a)
\(A=\frac{1}{2}.\frac{2}{3}\cdot\frac{3}{4}\cdot\cdot\cdot\frac{2013}{2014}\cdot\frac{2014}{2015}\cdot\frac{2015}{2016}\)
\(A=\frac{1}{2016}\)
(\(\frac{5}{2014}\)+ \(\frac{4}{2015}\)-\(\frac{3}{2016}\)) . (\(\frac{1}{2}\)-\(\frac{1}{3}\) - \(\frac{1}{6}\))
= ( \(\frac{5}{2014}\)+ \(\frac{4}{2015}\)- \(\frac{3}{2016}\)) . ( \(\frac{3}{6}\)- \(\frac{2}{6}\) - \(\frac{1}{6}\))
= ( \(\frac{5}{2014}\)+ \(\frac{4}{2015}\)- \(\frac{3}{2016}\)) . 0
= 0