\(\left(\frac{1}{38}-1\right)\cdot\left(\frac{1}{37}-1\right)\cdot\left(\frac{1}{36}-1\right)\cd...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2019

\(\left(\frac{1}{38}-1\right).\left(\frac{1}{37}-1\right).\left(\frac{1}{36}-1\right)....\left(\frac{1}{2}-1\right)\)

\(=-\left(1-\frac{1}{38}\right).\left(1-\frac{1}{37}\right)....\left(1-\frac{1}{2}\right)\)

\(=-\frac{37}{38}.\frac{36}{37}...\frac{1}{2}\)

\(=\frac{-1}{38}\)

13 tháng 7 2019

\(\left(\frac{1}{38}-1\right)\left(\frac{1}{37}-1\right)\left(\frac{1}{36}-1\right).......\left(\frac{1}{2}-1\right)\)

\(=\frac{-37}{38}.\frac{-36}{37}.\frac{-35}{36}.......\frac{-2}{3}.\frac{-1}{2}\)

\(=\frac{-1}{38}\)

13 tháng 7 2019

#)Giải :

a)\(2009^{\left(1000-1^3\right)\left(1000-2^3\right)...\left(1000-15^3\right)}=2009^{\left(1000-1^3\right)...\left(1000-10^3\right)...\left(1000-15^3\right)}=2009^0=1\)

b)\(\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)...\left(\frac{1}{125}-\frac{1}{25^3}\right)=\left(\frac{1}{125}-\frac{1}{1^3}\right)...\left(\frac{1}{125}-\frac{1}{5^3}\right)...\left(\frac{1}{125}-\frac{1}{25^3}\right)=\left(\frac{1}{125}-\frac{1}{1^3}\right)...0...\left(\frac{1}{125}-\frac{1}{25^3}\right)=0\)

23 tháng 12 2015

\(a_{n-1}=\frac{1}{1+2+3+...+n}=\frac{2}{n\left(n+1\right)}\)=>\(1-a_{n-1}=1-\frac{2}{n\left(n+1\right)}=\frac{n\left(n+1\right)-2}{n\left(n+1\right)}=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)

\(A=\left(1-\frac{2}{2.3}\right)\left(1-\frac{2}{3.4}\right)........\left(1-\frac{2}{2006.2007}\right)\)

\(=\left(\frac{1.4}{2.3}\right)\left(\frac{2.5}{3.4}\right)\left(\frac{3.6}{4.5}\right)........\left(\frac{2005.2008}{2006.2007}\right)\)\(=\frac{\left(1.2.3......2005\right)\left(4.5.6.....2008\right)}{\left(2.3.4.....2006\right)\left(3.4.5....2007\right)}=\frac{1.2008}{2006.3}=\frac{1004}{3009}\)

 

14 tháng 5 2019

\(\frac{\left(\frac{2}{3}\right)^3\cdot\left(-\frac{3}{4}^2\right)\cdot\left(-1\right)^{2003}}{\left(\frac{2}{5}\right)^2\cdot\left(-\frac{5}{12}\right)^3}\)

\(=\frac{\frac{8}{27}\cdot\frac{9}{16}\cdot\left(-1\right)}{\frac{4}{25}\cdot\left(-\frac{125}{1728}\right)}\)

\(=\frac{-\frac{1}{6}}{-\frac{5}{432}}=-\frac{1}{6}:\left(-\frac{5}{432}\right)=\frac{72}{5}\)

14 tháng 5 2019

\(\left[6.\left(\frac{-1}{3}\right)^2-3.\left(\frac{-1}{3}\right)+1\right]:\left(\frac{-1}{3}-1\right)\)

\(=\left[6.\frac{1}{9}-\left(-1\right)+1\right]:\frac{-4}{3}\)

\(=\left[\frac{2}{3}-\left(-1\right)+1\right]:\frac{-4}{3}\)

\(=\frac{8}{3}:\frac{-4}{3}=\frac{-24}{12}=-2\)

~ Hok tốt ~

22 tháng 1 2019

\(1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)+\frac{1}{4}.\left(1+2+3+4\right)+...+\frac{1}{20}.\left(1+...+20\right).\)

\(=1+\frac{3}{2}+\frac{6}{3}+\frac{10}{4}+...+\frac{210}{20}\)

\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{21}{2}\)

\(=\frac{2+3+4+5+...+21}{2}=\frac{230}{2}=115\)

27 tháng 9 2018

\(A=\left(\frac{1}{2^2}-1\right)\cdot\left(\frac{1}{3^2}-1\right)\cdot\left(\frac{1}{4^2}-1\right)\cdot...\cdot\left(\frac{1}{2014^2}-1\right)\)

\(A=\frac{-3}{2^2}\cdot\frac{-8}{3^2}\cdot\frac{-15}{4^2}\cdot...\cdot\frac{-2014^2+1}{2014^2}\)

\(A=\frac{1\cdot\left(-3\right)}{2^2}\cdot\frac{2\cdot\left(-4\right)}{3^2}\cdot\frac{3\cdot\left(-5\right)}{4^2}\cdot...\cdot\frac{2013\cdot\left(-2015\right)}{2014^2}\)

\(A=\frac{1\cdot2\cdot3\cdot...\cdot2013}{2\cdot3\cdot4\cdot...\cdot2014}\cdot\frac{\left(-3\right)\cdot\left(-4\right)\cdot\left(-5\right)\cdot...\cdot\left(-2015\right)}{2\cdot3\cdot4\cdot...\cdot2014}\)

\(A=\frac{1}{2014}\cdot\frac{-2015}{2}\)

\(A=\frac{-2015}{4028}\)