Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta luôn có : \(\begin{cases}x^2\ge0\\\left(y-\frac{1}{10}\right)^4\ge0\end{cases}\)\(\Rightarrow x^2+\left(y-\frac{1}{10}\right)^4\ge0\)
Để dấu "=" xảy ra thì x = 0 , y = 1/10
b/ Tương tự.
a, x = 0 ; y = 1/10
b, x = 10 ; y = 1/2 hoặc y = -1/2
k mk nha
1, \(x^2+\left(y-\frac{1}{10}\right)^4=0\) (1)
Ta thấy \(x^2\ge0;\left(y-\frac{1}{10}\right)^4\ge0\)với mọi x,y nên \(x^2+\left(y-\frac{1}{10}\right)^4\ge0\)với mọi x,y (2)
Từ (1) và (2) suy ra
\(\hept{\begin{cases}x^2=0\\y-\frac{1}{10}=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=\frac{1}{10}\end{cases}}}\)
2, \(\left(\frac{1}{2}x-5\right)^{20^2}+\left(y^2-\frac{1}{4}\right)^{10}\le0\) (1)
Ta thấy \(\left(\frac{1}{2}x-5\right)^{20}\ge0\Rightarrow\left(\frac{1}{2}x-5\right)^{20^2}\ge0\)với mọi x
\(\left(y^2-\frac{1}{4}\right)^{10}\ge0\)với mọi y
Suy ra \(\left(\frac{1}{2}x-5\right)^{20^2}+\left(y^2-\frac{1}{4}\right)^{10}\ge0\)(2)
Từ (1) và (2) suy ra
\(\hept{\begin{cases}\frac{1}{2}x-5=0\\y^2-\frac{1}{4}=0\end{cases}\Rightarrow\hept{\begin{cases}\frac{1}{2}x=5\\y^2=\frac{1}{4}\end{cases}\Rightarrow}\hept{\begin{cases}x=10\\y\in\left\{\frac{1}{2};-\frac{1}{2}\right\}\end{cases}}}\)
Vậy....
câu 1
\(-\frac{2}{3}xy^2z.\left(-3x^2\right)\)
\(=\left[\left(-\frac{2}{3}\right).\left(-3\right)\right].\left(x.x^2\right).y^2.z\)
\(=2x^3y^2z\)
Bâc là 6
Bài 2
\(5xy^2+\frac{1}{4}xy^2+\frac{-1}{2}xy^2\)
\(=xy^2\left(5+\frac{1}{4}+\frac{-1}{2}\right)\)
\(=\frac{19}{4}xy^2\)
CÂU 1:
A) \(\frac{-2}{3}xy^2z.\left(-3x^2\right)=\left(\frac{-2}{3}.\left(-3\right)\right).\left(xx^2\right).y^2z=2x^3y^2z\)
+) BẬC CỦA ĐƠN THỨC : 6
CÂU 2:
\(5xy^2+\frac{1}{4}xy^2+\left(\frac{-1}{2}xy^2\right)=\left(5+\frac{1}{4}+\frac{-1}{2}\right)xy^2\)
\(=\frac{19}{4}xy^2\)
CHÚC BN HỌC TỐT!!!!
1, \(=\frac{3\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{11}+\frac{1}{13}\right)}{7\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{11}+\frac{1}{13}\right)}=\frac{3}{7}\)
2, a, \(\Leftrightarrow\left(3x-2\right)^{10}-\left(3x-2\right)^6=0\)
\(\Leftrightarrow\left(3x-2\right)^6\left[\left(3x-2\right)^4-1\right]=0\)
TH1: (3x-2)^6=0 <=> 3x-2=0 <=> x=2/3
TH2: (3x-2)^4-1=0 <=> (3x-2)^4=1
<=> 3x-2 = 1 hoặc 3x-2=-1
<=>x=1 hoặc x=-1/3
Vậy x=2/3 hoặc x=1 hoặc x=-1/3
b, \(\Leftrightarrow\orbr{\begin{cases}2x^2-13=-5\\2x^2-13=5\end{cases}\Leftrightarrow\orbr{\begin{cases}2x^2=8\\2x^2=18\end{cases}\Leftrightarrow}\orbr{\begin{cases}x^2=4\\x^2=9\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\pm2\\x=\pm3\end{cases}}}\)
Do \(\left(x+\frac{1}{2}\right)^2\ge0;\left(y-\frac{1}{2}\right)^{1998}\ge0\)
Mà theo đề bài, \(\left(x+\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^{1998}=0\)
=> \(\hept{\begin{cases}\left(x+\frac{1}{2}\right)^2=0\\\left(y-\frac{1}{2}\right)^{1998}=0\end{cases}}\)=> \(\hept{\begin{cases}x+\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}}\)=> \(\hept{\begin{cases}x=\frac{-1}{2}\\y=\frac{1}{2}\end{cases}}\)
Vì (x+1/2)^2 và (y-1/2)^1998 luôn lớn hơn hoặc bằng 0
=>(x+1/2)^2=0 và (y-1/2)^1998=0
x+1/2=0 và y-1/2=0
x=-1/2 và y=1/2
Vậy vời x=-1/2 ;y=1/2 thì (x+1/2)^2+(y-1/2)^1998=0
\(\left(\frac{1}{2}x-5\right)^{29}\)ko làm đc
Phải mũ chẵn mới ra
la sao bn