Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Các ĐKXĐ tự tìm dùm mình hen :)
Ta có : \(D=\left(\frac{5}{x-\sqrt{x}-6}+\frac{1}{\sqrt{x}+2}\right):\frac{1}{\sqrt{x}-3}\)
=> \(D=\left(\frac{5}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}+\frac{1}{\sqrt{x}+2}\right)\left(\sqrt{x}-3\right)\)
=> \(D=\left(\frac{5+\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\right)\left(\sqrt{x}-3\right)\)
=> \(D=\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\right)\left(\sqrt{x}-3\right)\)
=> \(D=\left(\frac{1}{\sqrt{x}-3}\right)\left(\sqrt{x}-3\right)=1\)
Ta có : \(E=\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a+1}}{a-2\sqrt{a}+1}\)
=> \(E=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a+1}}{\left(\sqrt{a}-1\right)^2}\)
=> \(E=\left(\frac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)
=> \(E=\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)^2}{\sqrt{a}\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}=\frac{\sqrt{a}-1}{\sqrt{a}}\)
( làm đến đây thôi câu còn lại bạn tự làm hen )
Ghét nhất mấy câu viết sai đề b, c sai rất nhiều bạn ới
đấy là mình đánh máy tính nên kéo dài hơi nhầm bạn ơi chứ không phải sai đề :))
\(A=\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)^2\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)
\(A=\left(\frac{a-1}{2\sqrt{a}}\right)^2.\left[\frac{\left(\sqrt{a}-1\right)^2-\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right]\)
\(A=\frac{\left(a-1\right)^2}{4a}.\)\(\frac{\left(\sqrt{a}-1-\sqrt{a}-1\right)\left(\sqrt{a}-1+\sqrt{a}+1\right)}{a-1}\)
\(A=\frac{a-1}{4a}.\left(-2\right).2\sqrt{a}\)
\(A=\frac{\left(a-1\right).\left(-4\sqrt{a}\right)}{4a}\)
\(A=\frac{-\left(a-1\right)}{\sqrt{a}}\)
\(ĐKXĐ:a\ne0,1\)
\(A=\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)^2\left(\frac{\sqrt{a}-1}{\sqrt{a+1}}-\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)
\(A=\left(\frac{a}{4}-\frac{1}{2}+\frac{1}{4a}\right)\left(\frac{a-2\sqrt{a}+1}{a-1}-\frac{a+2\sqrt{a}+1}{a-1}\right)\)
\(A=\left(\frac{a^2-2a+1}{4a}\right)\left(\frac{-4\sqrt{a}}{a-1}\right)\)
\(A=\frac{\left(a-1\right)^2}{4a}\times\frac{-4\sqrt{a}}{a-1}\)
\(A=\frac{-4\sqrt{a}\left(a-1\right)^2}{4a\left(a-1\right)}\)
\(A=-\sqrt{a}\left(a-1\right)\)
Vậy........
k mk nha
\(=\dfrac{a\sqrt{a}-3-2\left(a-6\sqrt{a}+9\right)-a-4\sqrt{a}-3}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+1\right)}\cdot\dfrac{a-1}{a+8}\)
\(=\dfrac{a\sqrt{a}-a-4\sqrt{a}-6-2a+12\sqrt{a}-18}{\left(\sqrt{a}-3\right)}\cdot\dfrac{\sqrt{a}-1}{a+8}\)
\(=\dfrac{a\sqrt{a}-3a+8\sqrt{a}-24}{\left(\sqrt{a}-3\right)}\cdot\dfrac{\sqrt{a}-1}{a+8}=\sqrt{a}-1\)
\(\left(\frac{1}{2+2.\sqrt{a}}+\frac{1}{2-2.\sqrt{a}}-\frac{a^2+1}{1-a^2}\right).\left(1+\frac{1}{a}\right)\)
\(=\left(\frac{2-2.\sqrt{a}+2+2.\sqrt{a}}{\left(2+2.\sqrt{a}\right)\left(2-2.\sqrt{a}\right)}-\frac{a^2+1}{\left(1-a\right).\left(1+a\right)}\right).\left(\frac{a+1}{a}\right)\)
\(=\left(\frac{4}{4-4a}-\frac{a^2+1}{\left(1-a\right).\left(1+a\right)}\right).\left(\frac{a+1}{a}\right)=\frac{\left(1+a\right)}{\left(1-a\right).\left(1+a\right)}\cdot\frac{a+1}{a}=\frac{1+a}{\left(1-a\right).a}=\frac{a+1}{a-a^2}\)
\(\left(\frac{1-\sqrt{a}}{1-a}\right)^2\)
=\(\left[\frac{1-\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right]^2\)
=\(\left(\frac{1}{1+\sqrt{a}}\right)^2\)
=\(\frac{1}{1+2\sqrt{a}+a}\)
\(\left(\frac{1-\sqrt{a}}{1-a}\right)^2\)
\(=\left[\frac{1-\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right]^2\)
\(=\left(\frac{1}{1+\sqrt{a}}\right)^2\)
\(=\frac{1}{1+2\sqrt{a}+a}\)