\(\left(\dfrac{a+1}{2a-2}+\dfrac{1}{2-2a^2}\right)\dfrac{2a+2}{a+2}\)

a,tìm điều ki...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2020

a) \(ĐKXĐ:a\ne\pm1\)

b) \(P=\left(\dfrac{a+1}{2a-2}+\dfrac{1}{2-2a^2}\right)\cdot\dfrac{2a+2}{a+2}\)

\(=\left(\dfrac{a+1}{2\left(a-1\right)}+\dfrac{1}{2\left(1-a^2\right)}\right)\cdot\dfrac{2\left(a+1\right)}{a+2}\)

\(=\left(\dfrac{a+1}{2\left(a-1\right)}-\dfrac{1}{2\left(a-1\right)\left(a+1\right)}\right)\cdot\dfrac{2\left(a+1\right)}{a+2}\)

\(=\dfrac{\left(a+1\right)\left(a-1\right)-1}{2\left(a-1\right)\left(a+1\right)}\cdot\dfrac{2\left(a+1\right)}{a+2}\)

\(=\dfrac{a^2-1-1}{\left(a-1\right)\left(a+2\right)}\)

\(=\dfrac{a^2-2}{a^2+a-2}\)

Khi a = 2 thì :

\(P=\dfrac{2^2-2}{2^2+2-2}=\dfrac{2}{4}=\dfrac{1}{2}\)

p/s: check lại hộ tui nhá =)))

 

27 tháng 12 2020

thêm cho mình đkxđ : a \(\ne\) - 2

7 tháng 3 2020

a) ĐKXĐ: \(x\ne3;x\ne\pm2\)

\(C=\frac{2a-a^2}{a+3}\cdot\left(\frac{a-2}{a+2}-\frac{a+2}{a-2}+\frac{4a^2}{4-a^2}\right)\)

\(C=\frac{-a^2+2a}{a+3}\cdot\left(-\frac{4a}{a-2}\right)\)

\(C=-\frac{2a-a^2}{a+3}\cdot\frac{4a}{a-2}\)

\(C=-\frac{\left(2a-a^2\right)\cdot4a}{\left(a+3\right)\left(a-2\right)}\)

\(C=\frac{4a^2}{a+3}\)

b) \(C=\frac{4.4^2}{4+3}=\frac{46}{7}\)

c) \(\frac{4a^2}{a+3}=1\)

<=> 4a2 = a + 3

<=> 4a2 - a - 3 = 0

<=> 4a- 3a - 4a - 3 = 0

<=> a(4a + 3) - (4a + 3) = 0

<=> (4a + 3)(a - 1) = 0

<=> 4a + 3 = 0 hoặc a - 1 = 0

<=> a = -3/4 hoặc a = 1

7 tháng 3 2020

sửa đáp án câu b thành \(\frac{64}{7}\) nhé

\(A=\left(\dfrac{-\left(2a-1\right)}{2a+1}+\dfrac{\left(2a-1\right)^2}{2a+1}\cdot\dfrac{1}{\left(2a-1\right)\left(2a+1\right)}\right)\cdot\left(\dfrac{4a\left(a+1\right)+1}{4a^2}\right)-\dfrac{1}{2a}\)

\(=\left(\dfrac{-\left(2a-1\right)}{2a+1}+\dfrac{2a-1}{\left(2a+1\right)^2}\right)\cdot\dfrac{4a^2+4a+1}{4a^2}-\dfrac{1}{2a}\)

\(=\dfrac{-\left(2a-1\right)\left(2a+1\right)}{\left(2a+1\right)^2}\cdot\dfrac{\left(2a+1\right)^2}{4a^2}-\dfrac{1}{2a}\)

\(=\dfrac{-\left(4a^2-1\right)}{4a^2}-\dfrac{2a}{4a^2}\)

\(=\dfrac{-4a^2-2a+1}{4a^2}\)

8 tháng 12 2019

a) Để P xác định \(\Leftrightarrow\hept{\begin{cases}2a-2\ne0\\2-2a^2\ne0\\a+2\ne0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a\ne1\\a^2\ne1\\a\ne-2\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a\ne1\\a\ne-1vâ\ne1\\a\ne-2\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a\ne1\\a\ne-1\\a\ne2\end{cases}}\)

b) \(P=\left(\frac{a+1}{2a-2}+\frac{1}{2-2a^2}\right).\frac{2a+2}{a+2}\)

\(=\left[\frac{a+1}{2\left(a-1\right)}+\frac{1}{2\left(1-a\right)\left(1+a\right)}\right].\frac{2\left(a+1\right)}{a+2}\)

\(=\left[\frac{\left(a+1\right)^2}{2\left(a-1\right)\left(a+1\right)}-\frac{1}{2\left(a-1\right)\left(1+a\right)}\right].\frac{2\left(a+1\right)}{a+2}\)

\(=\frac{\left(a+1\right)^2-1}{2\left(a-1\right)\left(a+1\right)}.\frac{2\left(a+1\right)}{a+2}\)

\(=\frac{a\left(a+2\right)}{\left(a-1\right)\left(a+2\right)}\)

\(=\frac{a}{a-1}\)

c) \(\left|a\right|=3\Leftrightarrow\orbr{\begin{cases}a=3\\a=-3\end{cases}}\)

+) Với a=3 thỏa mãn \(\hept{\begin{cases}a\ne1\\a\ne-1\\a\ne2\end{cases}}\)nên thay a=3 vào P ta được:

( làm nốt)

TH kia tương tự

\(A=\left[\dfrac{\left(a-1\right)^2}{a^2+a+1}+\dfrac{2a^2-4a-1}{a^3-1}+\dfrac{1}{a-1}\right]\cdot\dfrac{a\left(a^2+1\right)}{2a}\)

\(=\dfrac{a^3-3a^2+3a-1+2a^2-4a-1+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\dfrac{a^2+1}{2}\)

\(=\dfrac{a^3-1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\dfrac{a^2+1}{2}=\dfrac{a^2+1}{2}\)

14 tháng 7 2017

\(\left(\dfrac{2a^3+a^2-a}{a^3-1}-2+\dfrac{1}{1-a}\right):\left(1:\dfrac{2a-1}{a-a^2}\right)\)

\(=\left(\dfrac{2a^3+a^2-a-2a^3+2-a^2-a-1}{\left(a-1\right)\left(a^2+a+1\right)}\right):\left(\dfrac{a\left(1-a\right)}{2a-1}\right)\)

\(=\dfrac{-2a+1}{\left(a-1\right)\left(a^2+a+1\right)}.\dfrac{2a-1}{a\left(1-a\right)}\)

\(=\dfrac{6a-3}{\left(a-1\right)^2\left(a^2+a+1\right)}\)

---

Thấy sai sai :vv

13 tháng 1 2018

minh giai phan d, nha bn :

x-a/b+c + x-b/c+a + x-c/a+b=3

=> (x-a/b+c - 1)+(x-b/a+c - 1 )+(x-c/a+b - 1) = 3-3=0

=>x-a-b-c/b+c + x-a-b-c/a+c + x-a-b-c/a+b =0

=>(x-a-b-c)(1/b+c + 1/a+c + 1/a+b )=0

Vi 1/b+c + 1/a+c + 1/a+b luon lon hon 0=>x-a-b-c=0

=>x=a+b+c

13 tháng 1 2018

g, x - a / b + c + x - b/ c+a + x - c/ a+b = 3x / a+b+c

a: ĐKXĐ: a<>3; a<>-3; a<>-1

b: \(P=\dfrac{2a^2-3a+3a+9-2a^2-3}{\left(a-3\right)\left(a+3\right)}\cdot\dfrac{a-3}{a+1}\)

\(=\dfrac{6}{\left(a+3\right)\left(a+1\right)}\)

c: |a|=2

=>a=2 hoặc a=-2

Khi a=-2 thì \(P=\dfrac{6}{\left(-2+3\right)\left(-2+1\right)}=-6\)

Khi a=2 thì \(P=\dfrac{6}{\left(2+3\right)\left(2+1\right)}=\dfrac{6}{5\cdot3}=\dfrac{2}{5}\)