Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x=-45^0+k90^0,k\in\mathbb{Z}\)
b) \(x=-\dfrac{\pi}{6}+k\pi,k\in\mathbb{Z}\)
c) \(x=\dfrac{3\pi}{4}+k2\pi,k\in\mathbb{Z}\)
d) \(x=300^0+k540^0,k\in\mathbb{Z}\)
a) Đk: sinx \(\ne\)0<=>x\(\ne\)k\(\Pi\)
pt<=>\(\sqrt{3}\)(1-cos2x)-cosx=0
<=>\(\sqrt{3}\)[1-(2cos2x-1)]-cosx=0
<=>2\(\sqrt{3}\)-2\(\sqrt{3}\)cos2x-cosx=0
<=>\(\left\{{}\begin{matrix}cosx=\dfrac{\sqrt{3}}{2}\\cosx=-\dfrac{2\sqrt{3}}{3}< -1\left(loai\right)\end{matrix}\right.\)
tới đây bạn tự giải cho quen, chứ chép thì thành ra không hiểu gì thì khổ
b)pt<=>2sin2x+2sin2x=1
<=>2sin2x+2sin2x=sin2x+cos2x
<=>4sinx.cosx+sin2x-cos2x=0
Tới đây là dạng của pt đẳng cấp bậc 2, ta thấy cosx=0 không phải là nghiệm của pt nên ta chia cả hai vế của pt cho cos2x:
pt trở thành:
4tanx+tan2x-1=0
<=>\(\left[{}\begin{matrix}tanx=-2+\sqrt{2}\\tanx=-2-\sqrt{5}\end{matrix}\right.\)
<=>\(\left[{}\begin{matrix}x=arctan\left(-2+\sqrt{5}\right)+k\Pi\\x=arctan\left(-2-\sqrt{5}\right)+k\Pi\end{matrix}\right.\)(k thuộc Z)
Chú ý: arctan tương ứng ''SHIFT tan'' (khi thử nghiệm trong máy tính)
c)Đk: cosx\(\ne\)0<=>x\(\ne\)\(\dfrac{\Pi}{2}\)+kpi
pt<=>cos2x+\(\sqrt{3}\)sin2x=1
<=>1-sin2x+\(\sqrt{3}\)sin2x-1=0
<=>(\(\sqrt{3}\)-1)sin2x=0
<=>sinx=0<=>x=k\(\Pi\)(k thuộc Z)
d)
pt<=>\(\sqrt{3}\)sin7x-cos7x=\(\sqrt{2}\)
Khúc này bạn coi SGK trang 35 người ta giả thích rõ ràng rồi
pt<=>\(\dfrac{\sqrt{3}}{2}\)sin7x-\(\dfrac{1}{2}\)cos7x=\(\dfrac{\sqrt{2}}{2}\)
<=>sin(7x-\(\dfrac{\Pi}{3}\))=\(\dfrac{\sqrt{2}}{2}\)
<=>sin(7x-\(\dfrac{\Pi}{3}\))=sin\(\dfrac{\Pi}{4}\)
Tới đây bạn tự giải nhé, giải ra nghiệm rồi kiểm tra xem nghiệm nào thuộc khoảng ( đề cho) rồi kết luận
Câu d) mình nhầm nhé
<=>sin(7x-\(\dfrac{\Pi}{6}\))=\(\dfrac{\sqrt{2}}{2}\) mới đúng sorry
a) Ta có:
−1≤cosx≤1,∀x∈R⇔0≤1+cosx≤2⇔0≤2(1+cosx)≤4⇔1≤√2(1+cosx+1≤3−1≤cosx≤1,∀x∈R⇔0≤1+cosx≤2⇔0≤2(1+cosx)≤4⇔1≤2(1+cosx+1≤3
Vậy y ≤ 3, ∀ x ∈ R
Dấu “ = “ xảy ra ⇔ cos x = 1 ⇔ x = k2π (k ∈ Z)
Vậy ymax = 3 khi x = k2π
b) Ta có:
Với mọi x ∈ R, ta có:
sin(x−π6)≤1⇔3sin(x−π6)≤3⇔3sin(x−π6)−2≤1⇔y≤1sin(x−π6)≤1⇔3sin(x−π6)≤3⇔3sin(x−π6)−2≤1⇔y≤1
Vậy ymax = 1 khi sin(x−π6)=1⇔x=2π3+k2π,k∈Z
a) \(dy=d\left(\dfrac{\sqrt{x}}{a+b}\right)=\left(\dfrac{\sqrt{x}}{a+b}\right)dx=\dfrac{1}{2\left(a+b\right)\sqrt{x}}dx\)
b) \(dy=d\left(x^2+4x+1\right)\left(x^2-\sqrt{x}\right)=\left[\left(2x+4\right)\left(x^2-\sqrt{x}\right)+\left(x^2+4x+1\right)\left(2x-\dfrac{1}{2\sqrt{x}}\right)\right]dx\)
a)ĐKXĐ:\(a\ge0;a\ne16\)
\(B=\left[\dfrac{3\sqrt{a}}{\sqrt{a}+4}+\dfrac{\sqrt{a}}{\sqrt{a}-4}+\dfrac{4\left(a+2\right)}{16-a}\right]:\left(1-\dfrac{2\sqrt{a}+5}{\sqrt{a}+4}\right)\)
=\(\dfrac{3\sqrt{a}\left(\sqrt{a}-4\right)+\sqrt{a}\left(\sqrt{a}+4\right)-4\left(a+2\right)}{a-16}:\dfrac{\sqrt{a}+4-2\sqrt{a}-5}{\sqrt{a}+4}=\dfrac{3a-12\sqrt{a}+a+4\sqrt{a}-4a-8}{\left(\sqrt{a}-4\right)\left(\sqrt{a}+4\right)}\cdot\dfrac{\sqrt{a}+4}{-\sqrt{a}-1}=\dfrac{-8\sqrt{a}-8}{\left(\sqrt{a}-4\right)\left(-\sqrt{a}-1\right)}=\dfrac{8\left(-\sqrt{a}-1\right)}{\left(\sqrt{a}-4\right)\left(-\sqrt{a}-1\right)}=\dfrac{8}{\sqrt{a}-4}\)
Vậy...
b)Với \(a\ge0;a\ne16\) thì B=\(\dfrac{8}{\sqrt{a}-4}\)
B=-3 thì \(\dfrac{8}{\sqrt{a}-4}=-3\)
=>\(9=-3\sqrt{a}+24\)
<=>-15=-3\(\sqrt{a}\)
<=>\(\sqrt{a}=5\)
<=>a=25(TM)
Vậy a=25 thì B=-3
c)Với \(a\ge0;a\ne16\) thì B=\(\dfrac{8}{\sqrt{a}-4}\)
8
(BẠN KẺ 1 BẢNG 3 HÀNG THÔI NHA,MÌNH KẺ LỖI NÊN LÀM 2 BẢNG)
Vậy...
cảm ơn bạn nha