\(\left[\dfrac{3\sqrt{a}}{\sqrt{a}+4}+\dfrac{\sqrt{a}}{\sqrt{a}-4}+\dfrac{4\left(a+2\right)}{16-...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2017

a)ĐKXĐ:\(a\ge0;a\ne16\)

\(B=\left[\dfrac{3\sqrt{a}}{\sqrt{a}+4}+\dfrac{\sqrt{a}}{\sqrt{a}-4}+\dfrac{4\left(a+2\right)}{16-a}\right]:\left(1-\dfrac{2\sqrt{a}+5}{\sqrt{a}+4}\right)\)

=\(\dfrac{3\sqrt{a}\left(\sqrt{a}-4\right)+\sqrt{a}\left(\sqrt{a}+4\right)-4\left(a+2\right)}{a-16}:\dfrac{\sqrt{a}+4-2\sqrt{a}-5}{\sqrt{a}+4}=\dfrac{3a-12\sqrt{a}+a+4\sqrt{a}-4a-8}{\left(\sqrt{a}-4\right)\left(\sqrt{a}+4\right)}\cdot\dfrac{\sqrt{a}+4}{-\sqrt{a}-1}=\dfrac{-8\sqrt{a}-8}{\left(\sqrt{a}-4\right)\left(-\sqrt{a}-1\right)}=\dfrac{8\left(-\sqrt{a}-1\right)}{\left(\sqrt{a}-4\right)\left(-\sqrt{a}-1\right)}=\dfrac{8}{\sqrt{a}-4}\)

Vậy...

b)Với \(a\ge0;a\ne16\) thì B=\(\dfrac{8}{\sqrt{a}-4}\)

B=-3 thì \(\dfrac{8}{\sqrt{a}-4}=-3\)

=>\(9=-3\sqrt{a}+24\)

<=>-15=-3\(\sqrt{a}\)

<=>\(\sqrt{a}=5\)

<=>a=25(TM)

Vậy a=25 thì B=-3

c)Với \(a\ge0;a\ne16\) thì B=\(\dfrac{8}{\sqrt{a}-4}\)

Để B nguyên thì \(\dfrac{8}{\sqrt{a}-4}\)phải nguyên<=>8 chia hết cho \(\sqrt{a}-4\)
<=>\(\sqrt{a}-4\)là Ư(8)
Mà Ư(8)={-8;-4;-2;-1;1;2;4;8}
Do \(\sqrt{a}\ge0\) ta có bảng sau:
\(\sqrt{a}-4\) -8 -4 -2 -1 1 2 4
8
\(\sqrt{a}\) -4(L) 0 2 3 5 6 8 12

\(\sqrt{a}\) 0 2 3 5 6 8 12
a 0(TM) 4(TM) 9(TM) 25(TM) 36(TM) 64(TM) 144(TM)

(BẠN KẺ 1 BẢNG 3 HÀNG THÔI NHA,MÌNH KẺ LỖI NÊN LÀM 2 BẢNG)

Vậy...

8 tháng 5 2017

cảm ơn bạn nha hihi

18 tháng 5 2017

a) \(x=-45^0+k90^0,k\in\mathbb{Z}\)

b) \(x=-\dfrac{\pi}{6}+k\pi,k\in\mathbb{Z}\)

c) \(x=\dfrac{3\pi}{4}+k2\pi,k\in\mathbb{Z}\)

d) \(x=300^0+k540^0,k\in\mathbb{Z}\)

4 tháng 4 2017

Giải bài 1 trang 176 sgk Đại Số 11 | Để học tốt Toán 11

Giải bài 1 trang 176 sgk Đại Số 11 | Để học tốt Toán 11

14 tháng 8 2017

a) Đk: sinx \(\ne\)0<=>x\(\ne\)k\(\Pi\)

pt<=>\(\sqrt{3}\)(1-cos2x)-cosx=0

<=>\(\sqrt{3}\)[1-(2cos2x-1)]-cosx=0

<=>2\(\sqrt{3}\)-2\(\sqrt{3}\)cos2x-cosx=0

<=>\(\left\{{}\begin{matrix}cosx=\dfrac{\sqrt{3}}{2}\\cosx=-\dfrac{2\sqrt{3}}{3}< -1\left(loai\right)\end{matrix}\right.\)

tới đây bạn tự giải cho quen, chứ chép thì thành ra không hiểu gì thì khổ

b)pt<=>2sin2x+2sin2x=1

<=>2sin2x+2sin2x=sin2x+cos2x

<=>4sinx.cosx+sin2x-cos2x=0

Tới đây là dạng của pt đẳng cấp bậc 2, ta thấy cosx=0 không phải là nghiệm của pt nên ta chia cả hai vế của pt cho cos2x:

pt trở thành:

4tanx+tan2x-1=0

<=>\(\left[{}\begin{matrix}tanx=-2+\sqrt{2}\\tanx=-2-\sqrt{5}\end{matrix}\right.\)

<=>\(\left[{}\begin{matrix}x=arctan\left(-2+\sqrt{5}\right)+k\Pi\\x=arctan\left(-2-\sqrt{5}\right)+k\Pi\end{matrix}\right.\)(k thuộc Z)

Chú ý: arctan tương ứng ''SHIFT tan'' (khi thử nghiệm trong máy tính)

c)Đk: cosx\(\ne\)0<=>x\(\ne\)\(\dfrac{\Pi}{2}\)+kpi

pt<=>cos2x+\(\sqrt{3}\)sin2x=1

<=>1-sin2x+\(\sqrt{3}\)sin2x-1=0

<=>(\(\sqrt{3}\)-1)sin2x=0

<=>sinx=0<=>x=k\(\Pi\)(k thuộc Z)

d)

pt<=>\(\sqrt{3}\)sin7x-cos7x=\(\sqrt{2}\)

Khúc này bạn coi SGK trang 35 người ta giả thích rõ ràng rồi

pt<=>\(\dfrac{\sqrt{3}}{2}\)sin7x-\(\dfrac{1}{2}\)cos7x=\(\dfrac{\sqrt{2}}{2}\)

<=>sin(7x-\(\dfrac{\Pi}{3}\))=\(\dfrac{\sqrt{2}}{2}\)

<=>sin(7x-\(\dfrac{\Pi}{3}\))=sin\(\dfrac{\Pi}{4}\)

Tới đây bạn tự giải nhé, giải ra nghiệm rồi kiểm tra xem nghiệm nào thuộc khoảng ( đề cho) rồi kết luận

14 tháng 8 2017

Câu d) mình nhầm nhé

<=>sin(7x-\(\dfrac{\Pi}{6}\))=\(\dfrac{\sqrt{2}}{2}\) mới đúng sorry

3 tháng 4 2017

a) Ta có:

−1≤cosx≤1,∀x∈R⇔0≤1+cosx≤2⇔0≤2(1+cosx)≤4⇔1≤√2(1+cosx+1≤3−1≤cos⁡x≤1,∀x∈R⇔0≤1+cos⁡x≤2⇔0≤2(1+cos⁡x)≤4⇔1≤2(1+cos⁡x+1≤3

Vậy y ≤ 3, ∀ x ∈ R

Dấu “ = “ xảy ra ⇔ cos x = 1 ⇔ x = k2π (k ∈ Z)

Vậy ymax = 3 khi x = k2π

b) Ta có:

Với mọi x ∈ R, ta có:

sin(x−π6)≤1⇔3sin(x−π6)≤3⇔3sin(x−π6)−2≤1⇔y≤1sin⁡(x−π6)≤1⇔3sin⁡(x−π6)≤3⇔3sin⁡(x−π6)−2≤1⇔y≤1

Vậy ymax = 1 khi sin(x−π6)=1⇔x=2π3+k2π,k∈Z


4 tháng 4 2017

a) \(dy=d\left(\dfrac{\sqrt{x}}{a+b}\right)=\left(\dfrac{\sqrt{x}}{a+b}\right)dx=\dfrac{1}{2\left(a+b\right)\sqrt{x}}dx\)

b) \(dy=d\left(x^2+4x+1\right)\left(x^2-\sqrt{x}\right)=\left[\left(2x+4\right)\left(x^2-\sqrt{x}\right)+\left(x^2+4x+1\right)\left(2x-\dfrac{1}{2\sqrt{x}}\right)\right]dx\)