K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2017

\(\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\le0\) \(\left(1\right)\)

Ta có :

\(\left\{{}\begin{matrix}\left(\dfrac{1}{2}x-5\right)^{20}\ge0\\\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\) \(\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}=0\)

Mặt khác :

\(\left\{{}\begin{matrix}\left(\dfrac{1}{2}x-5\right)^{20}\ge0\\\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x-5=0\\y^2-\dfrac{1}{4}=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=10\\\left[{}\begin{matrix}y=\dfrac{1}{2}\\y=-\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)

Vậy ...

15 tháng 9 2021

a) \(x^2+\left(y-\dfrac{1}{10}\right)^4=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y-\dfrac{1}{10}=0\end{matrix}\right.\)( do \(x^2\ge0,\left(y-\dfrac{1}{10}\right)^4\ge0\))

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\)

b) \(\left(\dfrac{1}{2}.x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\le0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x-5=0\\y^2-\dfrac{1}{4}=0\end{matrix}\right.\)( do \(\left(\dfrac{1}{2}x-5\right)^{20}\ge0,\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\))

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x=5\\y^2=\dfrac{1}{4}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=\pm\dfrac{1}{2}\end{matrix}\right.\)

15 tháng 9 2021

\(a,\Leftrightarrow\left\{{}\begin{matrix}x=0\\y-\dfrac{1}{10}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\\ b,\left\{{}\begin{matrix}\left(\dfrac{1}{2}x-5\right)^{20}\ge0\\\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\end{matrix}\right.\Leftrightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\)

Mà \(\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\le0\)

\(\Leftrightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}=0\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x=5\\y^2=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=\pm\dfrac{1}{2}\end{matrix}\right.\)

27 tháng 11 2017

a)

\(\left|\dfrac{1}{2}-\dfrac{1}{3}+x\right|=-\dfrac{1}{4}-y\\ \Rightarrow\left\{{}\begin{matrix}\dfrac{1}{2}-\dfrac{1}{3}+x=-\dfrac{1}{4}-y\\\dfrac{1}{2}-\dfrac{1}{3}+x=\dfrac{1}{4}+y\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+y=-\dfrac{5}{12}\\x-y=\dfrac{1}{12}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{6}\\y=-\dfrac{1}{4}\end{matrix}\right.\)

b)\(\left|x-y\right|+\left|y+\dfrac{9}{25}\right|=0\)

ta thấy : \(\left|x-y\right|\ge0\\ \left|y+\dfrac{9}{25}\right|\ge0\)\(\Rightarrow\left|x-y\right|+\left|y+\dfrac{9}{25}\right|\ge0\)

đẳng thửc xảy ra khi : \(\left\{{}\begin{matrix}x-y=0\\y+\dfrac{9}{25}=0\end{matrix}\right.\Rightarrow x=y=-\dfrac{9}{25}\)

vậy \(\left(x;y\right)=\left(-\dfrac{9}{25};-\dfrac{9}{25}\right)\)

27 tháng 11 2017

c) \(\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}=0\)

ta thấy \(\left(\dfrac{1}{2}x-5\right)^{20}\:và\:\left(y^2-\dfrac{1}{4}\right)^{10}\) là các lũy thừa có số mũ chẵn

\(\Rightarrow\:\)\(\left(\dfrac{1}{2}x-5\right)^{20}\ge0\\ \left(y^2-\dfrac{1}{4}\right)^{10}\ge0\)\(\Rightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\)

đẳng thức xảy ra khi \(\left\{{}\begin{matrix}\dfrac{1}{2}x-5=0\\y^2-\dfrac{1}{4}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=10\\\left[{}\begin{matrix}y=-\dfrac{1}{2}\\y=\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)

vậy cặp số x,y cần tìm là \(\left(10;\dfrac{1}{2}\right)\:hoặc\:\left(10;-\dfrac{1}{2}\right)\)

d)

\(\left|x\left(x^2-\dfrac{5}{4}\right)\right|=x\\ \Leftrightarrow x\left(x^2-\dfrac{5}{4}\right)=x\left(vì\:x\ge0\right)\\ \Leftrightarrow x\left(x^2-\dfrac{9}{4}\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x^2-\dfrac{9}{4}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)

vậy x cần tìm là \(-\dfrac{3}{2};0;\dfrac{3}{2}\)

e)\(x^2+\left(y-\dfrac{1}{10}\right)^4=0\)

ta thấy: \(x^2\ge0;\left(y-\dfrac{1}{10}\right)^4\ge0\)

\(\Rightarrow x^2+\left(y-\dfrac{1}{10}\right)^4\ge0\)

đẳng thức xảy ra khi: \(\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\)

vậy cặp số cần tìm là \(0;\dfrac{1}{10}\)

2 tháng 8 2018

Với mọi x,y ta có :

\(\left\{{}\begin{matrix}\left(12x-5\right)^{20}\ge0\\\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left(12x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\)

\(\left(12x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\le0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(12x-5\right)^{20}=0\\\left(y^2-\dfrac{1}{4}\right)^{10}=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{12}\\\left[{}\begin{matrix}y=\dfrac{1}{2}\\y=-\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)

Vậy..

2 tháng 8 2018

Thankyou very much!!haha

13 tháng 10 2017

Giải:

a) \(x+\left(-\dfrac{31}{12}\right)^2=\left(\dfrac{49}{12}\right)^2-x=y\)

\(\Leftrightarrow x+\left(-\dfrac{31}{12}\right)^2=\left(\dfrac{49}{12}\right)^2-x\)

\(\Leftrightarrow x+\left(-\dfrac{31}{12}\right)^2-\left(\dfrac{49}{12}\right)^2+x=0\)

\(\Leftrightarrow2x+\left(-\dfrac{31}{12}\right)^2-\left(\dfrac{49}{12}\right)^2=0\)

\(\Leftrightarrow2x+\dfrac{\left(-31\right)^2}{12^2}-\dfrac{49^2}{12^2}=0\)

\(\Leftrightarrow2x+\dfrac{\left(-31\right)^2-49^2}{144}=0\)

\(\Leftrightarrow2x+\dfrac{961-2401}{144}=0\)

\(\Leftrightarrow2x+\dfrac{-1440}{144}=0\)

\(\Leftrightarrow2x+\left(-10\right)=0\)

\(\Leftrightarrow2x=10\)

\(\Leftrightarrow x=5\)

\(x+\left(-\dfrac{31}{12}\right)^2=y^2\)

\(\Leftrightarrow5+\dfrac{961}{144}=y^2\)

\(\Leftrightarrow y^2=\dfrac{1681}{144}\)

\(\Leftrightarrow y=\pm\dfrac{41}{12}\)

Vậy ...

b) \(\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\le0\)

\(\left(\dfrac{1}{2}x-5\right)^{20}\ge0;\forall x\)

\(\left(y^2-\dfrac{1}{4}\right)^{10}\ge0;\forall y\)

\(\Rightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\le0\)

\(\Leftrightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x-5=0\\y^2-\dfrac{1}{4}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x=5\\y^2=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=\pm\dfrac{1}{2}\end{matrix}\right.\)

Vậy ...

Chúc bạn học tốt!

5 tháng 7 2018

a)Với mọi x thuộc R: \(x^2\ge0;\left(y-\dfrac{1}{10}\right)^4\ge0\Leftrightarrow x^2+\left(y-\dfrac{1}{10}\right)^4\ge0\)

\("="\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\)

b) \(\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\forall x\in R\)

mà: \(\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\le0\)

Xảy ra khi: \(\left\{{}\begin{matrix}x=10\\y=\pm\dfrac{1}{2}\end{matrix}\right.\)

14 tháng 10 2018

\(x^2+\left(y-\dfrac{1}{10}\right)^{2018}=0\\ \Leftrightarrow x^2+\left[\left(y-\dfrac{1}{10}\right)^{1009}\right]^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2=0\\\left(y-\dfrac{1}{10}\right)^{1009}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\)

8 tháng 11 2018

câu 1 \(A=\dfrac{3^2}{5^2}.5^2-\dfrac{9^3}{4^3}:\dfrac{3^3}{4^3}+\dfrac{1}{2}\)

\(A=\dfrac{3^2}{5^2}.5^2-\dfrac{\left(3^2\right)^3}{4^3}.\dfrac{4^3}{3^3}+\dfrac{1}{2}\)

\(A=\dfrac{3^2}{5^2}.5^2-\dfrac{3^6}{4^3}.\dfrac{4^3}{3^3}+\dfrac{1}{2}=3^2-3^3+\dfrac{1}{2}=-18+\dfrac{1}{2}=-\dfrac{35}{2}\)

\(B=\left[\dfrac{4}{11}+\dfrac{7}{22}.2\right]^{2010}-\left(\dfrac{1}{2^2}.\dfrac{4^4}{8^2}\right)^{2009}\)

\(B=\left[\dfrac{4}{11}+\dfrac{7}{11}\right]^{2010}-\left(\dfrac{1}{2^2}.\dfrac{\left(2^2\right)^4}{\left(2^3\right)^2}\right)^{2009}\)

\(B=1^{2010}-\left(\dfrac{1}{2^2}.\dfrac{2^8}{2^6}\right)^{2009}\)

\(B=1^{2010}-\left(\dfrac{2^8}{2^8}\right)^{2009}\)

\(B=1^{2010}-1^{2009}=1-1=0\)

8 tháng 11 2018

câu 2

a) \(2x-\dfrac{5}{4}=\dfrac{20}{15}\)

\(\Leftrightarrow2x=\dfrac{4}{3}+\dfrac{5}{4}\)

\(\Leftrightarrow2x=\dfrac{31}{12}\)

\(\Leftrightarrow x=\dfrac{31}{24}\)

b) \(\left(x+\dfrac{1}{3}\right)^3=\left(-\dfrac{1}{2}\right)^3\)

\(\Leftrightarrow x+\dfrac{1}{3}=-\dfrac{1}{2}\)

\(\Leftrightarrow x=-\dfrac{1}{2}-\dfrac{1}{3}\)

\(\Leftrightarrow x=-\dfrac{5}{6}\)

a: =>|3x-5|=|x+2|

=>3x-5=x+2 hoặc 3x-5=-x-2

=>2x=7 hoặc 4x=3

=>x=7/2 hoặc x=3/4

b: \(\Leftrightarrow\left\{{}\begin{matrix}3x-5=0\\x+2=0\end{matrix}\right.\Leftrightarrow x\in\varnothing\)

c: \(\Leftrightarrow\left|3x-5\right|=x-2\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>=2\\\left(3x-5-x+2\right)\left(3x-5+x-2\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>=2\\\left(2x-3\right)\left(4x-7\right)=0\end{matrix}\right.\Leftrightarrow x\in\varnothing\)

d: \(\dfrac{11}{2}\le\left|x\right|< \dfrac{17}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{11}{2}< =x< \dfrac{17}{2}\\-\dfrac{17}{2}< x< =-\dfrac{11}{2}\end{matrix}\right.\)

1: \(=5^{20}\cdot\left(\dfrac{1}{5}\right)^{20}+\left(\dfrac{-3}{4}\cdot\dfrac{-4}{3}\right)^8-1\)

=1+1-1=1

2: \(=\dfrac{15-8}{6}\cdot\dfrac{6}{7}+\left(-\dfrac{3}{2}\right)^2\)

=1+9/4

=13/4

3: \(=\dfrac{2^{10}\cdot3^8-2^{10}\cdot3^9}{3^8\cdot2^{10}+2^{10}\cdot3^8\cdot5}\)

\(=\dfrac{2^{10}\cdot3^8\left(1-3\right)}{3^8\cdot2^{10}\cdot6}=\dfrac{-2}{6}=\dfrac{-1}{3}\)