Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\left(-2\right).\left(-1\dfrac{1}{2}\right).\left(-1\dfrac{1}{3}\right).\left(-1\dfrac{1}{4}\right)...\left(-1\dfrac{1}{214}\right)\)
= \(\left(-2\right).\left(-\dfrac{3}{2}\right).\left(-\dfrac{4}{3}\right).\left(-\dfrac{5}{4}\right)...\left(-\dfrac{215}{214}\right)\)
= \(\dfrac{\left(-2\right).\left(-3\right).\left(-4\right).\left(-5\right)...\left(-215\right)}{1.2.3.4...214}\)
= \(\dfrac{2.3.4.5...215}{1.2.3.4...214}\)
= \(\dfrac{215}{1}=215\)
B = \(\left(-1\dfrac{1}{2}\right).\left(-1\dfrac{1}{3}\right).\left(-1\dfrac{1}{4}\right)....\left(-1\dfrac{1}{299}\right)\)
= \(\left(-\dfrac{3}{2}\right).\left(-\dfrac{4}{3}\right).\left(-\dfrac{5}{4}\right)...\left(-\dfrac{300}{299}\right)\)
= \(\dfrac{\left(-3\right).\left(-4\right).\left(-5\right)...\left(-300\right)}{2.3.4...299}\)
= \(\dfrac{3.4.5...300}{2.3.4.5...299}\)
= \(\dfrac{300}{2}=150\)
c)
Ta có :\(2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{1+\dfrac{1}{2}}}}\)
\(=2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{\dfrac{3}{2}}}}\) \(=2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{2}{3}}}\) \(=2+\dfrac{1}{1+\dfrac{1}{\dfrac{8}{3}}}\) \(=2+\dfrac{1}{1+\dfrac{3}{8}}\) \(=2+\dfrac{1}{\dfrac{11}{8}}\) \(=2+\dfrac{8}{11}\) \(=\dfrac{30}{11}\)
d) \(\left(\dfrac{1}{3}\right)^{-1}-\left(-\dfrac{6}{7}\right)^0+\left(\dfrac{1}{2}\right)^2:2\)
\(=3-1+\left(\dfrac{1}{2}\right)^2:2\)
\(=3-1+\dfrac{1}{4}:2\)
\(=3-1+\dfrac{1}{8}\)
\(=\dfrac{17}{8}\)
\(\left(\dfrac{1}{5}+\dfrac{5}{6}-\dfrac{9}{10}\right).\dfrac{3}{5}-0,75:1\dfrac{1}{2}-1,25^2\)
\(=\left(\dfrac{1}{5}+\dfrac{5}{6}-\dfrac{9}{10}\right).\dfrac{3}{5}-\dfrac{3}{4}:\dfrac{3}{2}-\dfrac{25}{16}\) \(=\left(\dfrac{31}{30}-\dfrac{9}{10}\right).\left(-\dfrac{3}{20}\right):\left(-\dfrac{1}{16}\right)\\ \\ \\ \\ \\ \\ \\ \\ \\ =\dfrac{2}{15}.\left(-\dfrac{3}{20}\right):\left(-\dfrac{1}{16}\right)\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ =\left(-\dfrac{1}{50}\right):\left(-\dfrac{1}{16}\right)\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ =\dfrac{8}{25}\)
Các bạn trả lời giúp mk nha. Mk đang cần gấp. Chều nay mk kiểm tra rồi
a) = 4. 5/4 + 25. [ 3/2 : (5/4)2] : 27/8
= 5 + 25. 12/5: 27/8
=5 +160/9
=205/9
b) = 8+ 3- 1+2.8
=11-1+2.8
=10+2.8
=10+ 16
= 26
c)= 3+1+1/4:2
= 4+ 0,125
=4,125
bai 1
\(A=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right).....\left(\dfrac{1}{10}-1\right)\)
\(A=\left(\dfrac{1-2}{2}\right)\left(\dfrac{1-3}{3}\right).....\left(\dfrac{1-9}{10}\right)\)
\(A=-\left(\dfrac{1.2.3.....8.9}{2.3....9.10}\right)=-\dfrac{1}{10}>-\dfrac{1}{9}\)
câu 1 \(A=\dfrac{3^2}{5^2}.5^2-\dfrac{9^3}{4^3}:\dfrac{3^3}{4^3}+\dfrac{1}{2}\)
\(A=\dfrac{3^2}{5^2}.5^2-\dfrac{\left(3^2\right)^3}{4^3}.\dfrac{4^3}{3^3}+\dfrac{1}{2}\)
\(A=\dfrac{3^2}{5^2}.5^2-\dfrac{3^6}{4^3}.\dfrac{4^3}{3^3}+\dfrac{1}{2}=3^2-3^3+\dfrac{1}{2}=-18+\dfrac{1}{2}=-\dfrac{35}{2}\)
\(B=\left[\dfrac{4}{11}+\dfrac{7}{22}.2\right]^{2010}-\left(\dfrac{1}{2^2}.\dfrac{4^4}{8^2}\right)^{2009}\)
\(B=\left[\dfrac{4}{11}+\dfrac{7}{11}\right]^{2010}-\left(\dfrac{1}{2^2}.\dfrac{\left(2^2\right)^4}{\left(2^3\right)^2}\right)^{2009}\)
\(B=1^{2010}-\left(\dfrac{1}{2^2}.\dfrac{2^8}{2^6}\right)^{2009}\)
\(B=1^{2010}-\left(\dfrac{2^8}{2^8}\right)^{2009}\)
\(B=1^{2010}-1^{2009}=1-1=0\)
câu 2
a) \(2x-\dfrac{5}{4}=\dfrac{20}{15}\)
\(\Leftrightarrow2x=\dfrac{4}{3}+\dfrac{5}{4}\)
\(\Leftrightarrow2x=\dfrac{31}{12}\)
\(\Leftrightarrow x=\dfrac{31}{24}\)
b) \(\left(x+\dfrac{1}{3}\right)^3=\left(-\dfrac{1}{2}\right)^3\)
\(\Leftrightarrow x+\dfrac{1}{3}=-\dfrac{1}{2}\)
\(\Leftrightarrow x=-\dfrac{1}{2}-\dfrac{1}{3}\)
\(\Leftrightarrow x=-\dfrac{5}{6}\)
1)(-1/2)^2:1/4-2.(-1/2)^3+căn 4
=1/4:1/4-2.-1/8+2
= 1-(-1/4)+2
=1+1/4+2=13/4
2) 3-(-6/7)^0+căn 9 :2
= 3-1+3:2
=3-1+3/2=7/2
3) (-2)^3+1/2:1/8-căn 25 + |-64|
= -8+4-5+64= 55
4) (-1/2)^4+|-2/3|-2007^0
= 1/16+2/3-1
= -13/48
5) = 178/495:623/495-17/60:119/120
= 2/7-2/7=0
6) [2^3.(-1/2)^3+1/2]+[25/22+6/25-3/22+19/25+1/2]
= [-1+1/2]+[(25/22-3/22)+(6/25+19/25)+1/2]
= -1/2+[1+1+1/2]
= -1/2+5/2=2
Mấy cái dấu chấm đó là nhân nha bn!
5) \(\left(-2\right)^2+\sqrt{36}-\sqrt{9}+\sqrt{25}\)
=\(4+6-3+5\)
=\(12\)
2) \(\dfrac{11}{25}.\left(-24,8\right)-\dfrac{11}{25}.75,2\)
=\(\dfrac{11}{25}.\left(-24,8-75,2\right)\)
=\(\dfrac{11}{25}.\left(-100\right)\)
=\(-44\)
\(a.\)
\(\left[6.\left(-\dfrac{1}{3}\right)^2-3\left(-\dfrac{1}{3}\right)+1\right]:\left(-\dfrac{1}{3}-1\right)\)
\(=\left[6.\dfrac{1}{9}+1+1\right]:\left(-\dfrac{4}{3}\right)\)
\(=\left(\dfrac{8}{3}\right):\left(-\dfrac{4}{3}\right)\)
\(=\left(\dfrac{8}{3}\right).\left(-\dfrac{3}{4}\right)\)
\(=-2\)
\(b.\)
\(\dfrac{\left(\dfrac{2}{3}\right)^3.\left(-\dfrac{3}{4}\right)^2.\left(-1\right)^{2003}}{\left(\dfrac{2}{5}\right)^2.\left(-\dfrac{5}{12}\right)^3}\)
\(=\dfrac{\dfrac{8}{27}.\dfrac{9}{16}.\left(-1\right)}{\dfrac{4}{25}.\left(-\dfrac{125}{1728}\right)}\)
\(=\dfrac{-\dfrac{1}{6}}{-\dfrac{5}{432}}\)
\(=\dfrac{72}{5}\)
\(A=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right).....\left(\dfrac{1}{2020^2}-1\right)\)
\(=-\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)...\left(1-\dfrac{1}{2020^2}\right)\)( do có 2019 cặp số )
\(=-\left(1-\dfrac{1}{2}\right)\left(1+\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1+\dfrac{1}{3}\right)...\left(1-\dfrac{1}{2020}\right)\left(1+\dfrac{1}{2020}\right)\)
\(=-\dfrac{1}{2}.\dfrac{3}{2}.\dfrac{2}{3}.\dfrac{4}{3}...\dfrac{2019}{2020}.\dfrac{2021}{2020}\)
\(=-\dfrac{1.2...2019}{2.3...2020}.\dfrac{3.4...2021}{2.3.2020}\)
\(=-\dfrac{1}{2020}.\dfrac{2021}{2}\)
\(=\dfrac{-2021}{4040}\)
\(\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)...\left(\dfrac{1}{2020^2}-1\right)\)
\(=\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{3}+1\right)...\left(\dfrac{1}{2020}+1\right)\left(\dfrac{1}{2020}-1\right)\)
\(=\left[\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)...\left(\dfrac{1}{2020}+1\right)\right]\left[\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)...\left(\dfrac{1}{2020}-1\right)\right]\)
\(=\left(\dfrac{3}{2}.\dfrac{4}{3}...\dfrac{2021}{2020}\right)\left[\left(-\dfrac{1}{2}\right).\left(-\dfrac{2}{3}\right)...\left(-\dfrac{2019}{2020}\right)\right]\)
\(=\dfrac{2021}{2}.\dfrac{-1}{2020}=\dfrac{-2021}{4040}\)