\(\left(\Delta=A^2\right)\) Cho phương trình \(x^2-2\left(2m+1\righ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 11 2019

\(\Delta'=\left(2m+1\right)^2-\left(4m^2+4m-3\right)=4\)

Phương trình đã cho luôn có 2 nghiệm: \(\left\{{}\begin{matrix}x=2m+3\\x=2m-1\end{matrix}\right.\)

\(2m+3>2m-1\) \(\forall m\Rightarrow\left\{{}\begin{matrix}x_1=2m-1\\x_2=2m+3\end{matrix}\right.\)

\(\Rightarrow\left|2m-1\right|=2\left|2m+3\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}2m-1=4m+6\\1-2m=4m+6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=-\frac{7}{2}\\m=-\frac{5}{6}\end{matrix}\right.\)

DD
14 tháng 5 2021

\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0,\forall m\inℝ\)

nên phương trình luôn có hai nghiệm phân biệt \(x_1+x_2\)

Theo định lí Viete: 

\(\hept{\begin{cases}x_1+x_2=2m+2\\x_1x_2=2m-3\end{cases}}\)

\(P=\left|\frac{x_1+x_2}{x_1-x_2}\right|=\frac{\left|x_1+x_2\right|}{\left|x_1-x_2\right|}=\frac{\left|x_1+x_2\right|}{\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}}\)

\(=\frac{\left|2m+2\right|}{\sqrt{\left(2m+2\right)^2-4\left(2m-3\right)}}=\frac{\left|2m+2\right|}{\sqrt{4m^2+16}}=\frac{\left|m+1\right|}{\sqrt{m^2+4}}\ge0\)

Dấu \(=\)xảy ra khi \(m=-1\)

4 tháng 4 2019

\(\Delta'=\left(m-1\right)^2-m^2+m-1=m^2-2m+1-m^2+m-1=-m.\)

Để phương trình có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow-m\ge0\Leftrightarrow m\le0\)

Theo vi ét:

\(\hept{\begin{cases}x_1+x_2=-2\left(m-1\right)\\x_1.x_2=m^2-m+1=\left(m-\frac{1}{2}\right)^2+\frac{3}{4}>0\end{cases}}\)

\(\left|x_1\right|+\left|x_2\right|=4\Leftrightarrow x_1+x_2+2\left|x_1.x_2\right|=16\)

\(\Leftrightarrow1-2m+2\left|m^2-m+1\right|=16\)

\(\Leftrightarrow1-2m+2m^2-2m+2=16\)(Vì \(m^2-m+1>0\Rightarrow\left|m^2-m+1\right|=m^2-m+1\))

\(\Leftrightarrow2m^2-4m-13=0\)

Đến đây bạn tự giải \(\Delta\)tìm m đối chiếu điều kiện là ok.

3 tháng 4 2017

câu hỏi trên Vio đúng ko bn

9 tháng 4 2017

Bài này nếu tinh ý một chút Đức sẽ nhận ra \(a-b+c=1+4m+1-4m-2=0\)

Suy ra pt trên có \(\hept{\begin{cases}x_1=-1\\x_2=\frac{-c}{a}=4m+2\end{cases}}\)

Thay vào \(x_1^5+x_2^5=242\) \(\Leftrightarrow\) \(\left(-1\right)^5+\left(4m+2\right)^5=242\) \(\Leftrightarrow\) \(m=0.25\)

NV
16 tháng 7 2020

\(\Delta'=\left(2m+1\right)^2-4m^2-4m+3=4>0\)

Pt luôn có 2 nghiệm pb \(\left[{}\begin{matrix}x=2m+1-2=2m-1\\x=2m+1+2=2m+3\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x_1=2m-1\\x_2=2m+3\end{matrix}\right.\) \(\Rightarrow\left|2m-1\right|=2\left|2m+3\right|\Rightarrow\left[{}\begin{matrix}4m+6=2m-1\\4m+6=1-2m\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m=-\frac{7}{2}\\m=-\frac{5}{6}\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}x_1=2m+3\\x_2=2m-1\end{matrix}\right.\) \(\Rightarrow\left|2m+3\right|=2\left|2m-1\right|\)

\(\Rightarrow\left[{}\begin{matrix}2m+3=4m-2\\2m+3=2-4m\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=\frac{5}{2}\\m=-\frac{1}{6}\end{matrix}\right.\)

16 tháng 7 2020

@Akai Haruma @Nguyễn Lê Phước Thịnh giúp em với ạ