K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2022

ĐKXĐ \(\left\{{}\begin{matrix}x\ne-1\\y\ne1\end{matrix}\right.\)

Giả sử \(x>-1\) và \(y>1\), khi đó \(x+1>0\) và \(y-1>0\)

Áp dụng BĐT \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) với \(a,b>0\), ta có:

\(\dfrac{1}{x+1}+\dfrac{1}{y-1}\ge\dfrac{4}{x+1+y-1}=\dfrac{4}{x+y}\)

Dấu "=" xảy ra khi \(x+1=y-1\Leftrightarrow y=x+2\)

Thay vào pt thứ 2, ta có \(\dfrac{2}{x+1}-\dfrac{3}{2x-1}=1\)

\(\Leftrightarrow\dfrac{2\left(2x-1\right)-3\left(x+1\right)}{\left(x+1\right)\left(2x-1\right)}=1\)\(\Leftrightarrow\dfrac{4x-2-3x-3}{2x^2-x+2x-1}=1\)\(\Leftrightarrow\dfrac{x-5}{2x^2+x-1}=1\)\(\Rightarrow2x^2+x-1=x-5\Leftrightarrow2x^2=-4\) (vô lí)

Do đó ta loại trường hợp \(\left\{{}\begin{matrix}x>-1\\y>1\end{matrix}\right.\), tức cả 2 điều này không thể xảy ra cùng lúc.

Xét trường hợp \(\left\{{}\begin{matrix}x< -1\\y< 1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+1< 0\\y-1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\left(x+1\right)>0\\-\left(y-1\right)>0\end{matrix}\right.\)

Từ đó \(\dfrac{1}{x+1}+\dfrac{1}{y-1}=-\left(\dfrac{1}{-x-1}+\dfrac{1}{1-y}\right)\)

Ta có \(\dfrac{1}{-x-1}+\dfrac{1}{1-y}\ge\dfrac{4}{-x-1+1-y}=-\dfrac{4}{x+y}\)\(\Leftrightarrow-\left(\dfrac{1}{-x-1}+\dfrac{1}{1-y}\right)\le\dfrac{4}{x+y}\)\(\Leftrightarrow\dfrac{1}{x+1}+\dfrac{1}{y-1}\le\dfrac{4}{x+y}\)

Dấu "=" xảy ra khi \(-x-1=1-y\Leftrightarrow y=x+2\)

Tương tự như trường hợp trên, ta thay vào pt (2) và loại trường hợp \(\left\{{}\begin{matrix}x< -1\\y< 1\end{matrix}\right.\)

Ta có thể kết luận rằng \(x+1\) và \(y-1\)phải trái dấu

\(\Rightarrow\left(x+1\right)\left(y-1\right)< 0\Leftrightarrow xy-x+y-1< 0\)

Đặt \(\left\{{}\begin{matrix}a=x+1\\b=y-1\end{matrix}\right.\) (điều kiện \(ab< 0\)), hpt đã cho trở thành \(\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{4}{a+b}\\\dfrac{2}{a}-\dfrac{3}{b}=1\end{matrix}\right.\), xét \(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{4}{a+b}\Leftrightarrow\dfrac{a+b}{ab}=\dfrac{4}{a+b}\Leftrightarrow\left(a+b\right)^2=4ab\)\(\Leftrightarrow\left(a-b\right)^2=0\)\(\Leftrightarrow a=b\)\(\Leftrightarrow ab>0\) (trái với \(ab< 0\))

Vậy hpt đã cho vô nghiệm.

 

 

 

8 tháng 1 2018

\(a.\left\{{}\begin{matrix}4\dfrac{1}{x}+\dfrac{1}{y}=12\\\dfrac{1}{x}+\dfrac{1}{y}=-3\end{matrix}\right.\) (1)

ĐK xác định : x≠0 ; y≠0

Đặt ẩn phụ : a = \(\dfrac{1}{x}\) ; b = \(\dfrac{1}{y}\)

Thay vào (1) ta được :

\(\left\{{}\begin{matrix}4a+b=12\\a+b=-3\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}3a=15\\a+b=-3\end{matrix}\right.< =>\left\{{}\begin{matrix}a=5\\b=-8\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=-\dfrac{1}{8}\end{matrix}\right.\)

Vậy S = {(\(\dfrac{1}{5};-\dfrac{1}{8}\))}

\(b.\left\{{}\begin{matrix}5\dfrac{1}{x}+2\dfrac{1}{y}=6\\2\dfrac{1}{x}-\dfrac{1}{y}=3\end{matrix}\right.\) (2)

ĐK xác định : x≠0 ; y≠0

Đặt ẩn phụ : a = 1/x ; b = 1/y

Thay vào (2) ta được : \(\left\{{}\begin{matrix}5a+2b=6\\2a-b=3\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}5a+2b=6\\4a-2b=6\end{matrix}\right.< =>\left\{{}\begin{matrix}9a=12\\2a-b=3\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}a=\dfrac{4}{3}\\b=-\dfrac{1}{3}\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=\dfrac{3}{4}\\y=-3\end{matrix}\right.\)

Vậy S = {(\(\dfrac{3}{4};-3\) )}

c) \(\left\{{}\begin{matrix}3\dfrac{1}{x}-6\dfrac{1}{y}=2\\\dfrac{1}{x}-\dfrac{1}{y}=5\end{matrix}\right.\)

ĐK xác định : x≠0 ; y ≠0

Áp dụng quy tác cộng đại số ta có :

\(\left\{{}\begin{matrix}3\dfrac{1}{x}-6\dfrac{1}{y}=2\\\dfrac{1}{x}-\dfrac{1}{y}=5\end{matrix}\right.< =>\left\{{}\begin{matrix}3\dfrac{1}{x}-6\dfrac{1}{y}=2\\3\dfrac{1}{x}-3\dfrac{1}{y}=15\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}-3\dfrac{1}{y}=-13\\\dfrac{1}{x}-\dfrac{1}{y}=5\end{matrix}\right.< =>\left\{{}\begin{matrix}y=\dfrac{3}{13}\\x=\dfrac{3}{28}\end{matrix}\right.\)

Vậy S = {(\(\dfrac{3}{28};\dfrac{3}{13}\))}

d) \(\left\{{}\begin{matrix}\dfrac{1}{x}-4\dfrac{1}{y}=5\\2\dfrac{1}{x}-3\dfrac{1}{y}=1\end{matrix}\right.\)

ĐK xác định : x≠0 ; y≠0

áp dụng quy tắc cộng đại số ta có :

\(\left\{{}\begin{matrix}\dfrac{1}{x}-4\dfrac{1}{y}=5\\2\dfrac{1}{x}-3\dfrac{1}{y}=1\end{matrix}\right.< =>\left\{{}\begin{matrix}2\dfrac{1}{x}-8\dfrac{1}{y}=10\\2\dfrac{1}{x}-3\dfrac{1}{y}=1\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}-5\dfrac{1}{y}=9\\\dfrac{1}{x}-4\dfrac{1}{y}=5\end{matrix}\right.< =>\left\{{}\begin{matrix}y=-\dfrac{5}{9}\\x=-\dfrac{5}{11}\end{matrix}\right.\)

Vậy S = {(\(-\dfrac{5}{11};-\dfrac{5}{9}\))}

e) ĐK xác định x≠0 ; y≠0

\(\left\{{}\begin{matrix}\dfrac{1}{x}-3\dfrac{1}{y}=4\\6\dfrac{1}{x}-\dfrac{1}{y}=2\end{matrix}\right.< =>\left\{{}\begin{matrix}\dfrac{1}{x}-3\dfrac{1}{y}=4\\18\dfrac{1}{x}-3\dfrac{1}{y}=6\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}-17\dfrac{1}{x}=-2\\\dfrac{1}{x}-3\dfrac{1}{y}=4\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}x=\dfrac{17}{2}\\y=-\dfrac{17}{22}\end{matrix}\right.\)

Vậy S={(\(\dfrac{17}{2};-\dfrac{17}{22}\))}

12 tháng 1 2019
https://i.imgur.com/NPx7OjZ.jpg
12 tháng 1 2019
https://i.imgur.com/cKHt1qr.jpg

a: \(\left\{{}\begin{matrix}\dfrac{x}{35}-y=2\\y-\dfrac{x}{50}=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{x-35y}{35}=2\\\dfrac{50y-x}{50}=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x-35y=70\\-x+50y=50\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}15y=120\\x-35y=70\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=8\\x=70+35y=70+35\cdot8=350\end{matrix}\right.\)

b: ĐKXĐ: x<>0 và y<>0

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}\\\dfrac{3}{x}+\dfrac{6}{y}=\dfrac{1}{4}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{3}{y}=\dfrac{3}{16}\\\dfrac{3}{x}+\dfrac{6}{y}=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{3}{y}=\dfrac{3}{16}-\dfrac{1}{4}=\dfrac{-1}{16}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=48\\\dfrac{1}{x}=\dfrac{1}{16}-\dfrac{1}{48}=\dfrac{2}{48}=\dfrac{1}{24}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=24\\y=48\end{matrix}\right.\left(nhận\right)\)

16 tháng 6 2017

Hệ hai phương trình bậc nhất hai ẩn

Hệ hai phương trình bậc nhất hai ẩn

26 tháng 11 2023

a: ĐKXĐ: x<>-1 và y<>-1

\(\left\{{}\begin{matrix}\dfrac{2x}{x+1}+\dfrac{y}{y+1}=2\\\dfrac{x}{x+1}+\dfrac{3}{y+1}=-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{2x+2-2}{x+1}+\dfrac{y+1-1}{y+1}=2\\\dfrac{x+1-1}{x+1}+\dfrac{3}{y+1}=-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2-\dfrac{2}{x+1}+1-\dfrac{1}{y+1}=2\\1-\dfrac{1}{x+1}+\dfrac{3}{y+1}=-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{-2}{x+1}+\dfrac{-1}{y+1}=2-3=-1\\\dfrac{1}{x+1}-\dfrac{3}{y-1}=1+1=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{-2}{x+1}+\dfrac{-1}{y+1}=-1\\\dfrac{2}{x+1}-\dfrac{6}{y-1}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{7}{y-1}=3\\\dfrac{1}{x+1}-\dfrac{3}{y-1}=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y-1=-\dfrac{7}{3}\\\dfrac{1}{x+1}-3:\dfrac{-7}{3}=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=-\dfrac{4}{3}\\\dfrac{1}{x+1}+3\cdot\dfrac{3}{7}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{4}{3}\\\dfrac{1}{x+1}=2-\dfrac{9}{7}=\dfrac{5}{7}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=-\dfrac{4}{3}\\x+1=\dfrac{7}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{4}{3}\\x=\dfrac{2}{5}\end{matrix}\right.\left(nhận\right)\)

b: ĐKXĐ: y<>0 và y<>-12

\(\left\{{}\begin{matrix}\dfrac{x}{y}-\dfrac{x}{y+12}=1\\\dfrac{x}{y+12}-\dfrac{x}{y}=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{x}{y}-\dfrac{x}{y+12}=1\\\dfrac{x}{y}-\dfrac{x}{y+12}=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}0\cdot\dfrac{x}{y+12}=3\left(vôlý\right)\\\dfrac{x}{y}-\dfrac{x}{y+12}=1\end{matrix}\right.\)

Vậy: \(\left(x,y\right)\in\varnothing\)

d: ĐKXĐ: \(\left\{{}\begin{matrix}x< >1\\y< >1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\dfrac{2x}{y-1}+\dfrac{3y}{x-1}=1\\\dfrac{2y}{x-1}-\dfrac{5x}{y-1}=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{2x}{y-1}+\dfrac{3y}{x-1}=1\\\dfrac{5x}{y-1}-\dfrac{2y}{x-1}=-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{4x}{y-1}+\dfrac{6y}{x-1}=2\\\dfrac{15x}{y-1}-\dfrac{6y}{x-1}=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{19x}{y-1}=-4\\\dfrac{2x}{y-1}+\dfrac{3y}{x-1}=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{x}{y-1}=\dfrac{-19}{4}\\2\cdot\dfrac{-19}{4}+\dfrac{3y}{x-1}=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4x=-19\left(y-1\right)\\\dfrac{3y}{x-1}=1+\dfrac{19}{2}=\dfrac{21}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x+19y=19\\\dfrac{y}{x-1}=\dfrac{7}{2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4x+19y=19\\7x-7=2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x+19y=19\\7x-2y=7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}8x+38y=38\\133x-38y=133\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}141x=171\\7x-2y=7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{171}{141}\\2y=7x-7=\dfrac{70}{47}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{171}{141}=\dfrac{57}{47}\\y=\dfrac{35}{47}\end{matrix}\right.\left(nhận\right)\)

11 tháng 12 2022

1: \(\left\{{}\begin{matrix}\left|x-1\right|+\dfrac{2}{y}=2\\-\left|x-1\right|+\dfrac{4}{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6}{y}=3\\\left|x-1\right|=2-\dfrac{2}{y}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\\left|x-1\right|=2-\dfrac{2}{2}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x\in\left\{2;0\right\}\end{matrix}\right.\)

2: \(\left\{{}\begin{matrix}2\left|x-1\right|-\dfrac{5}{y-1}=-3\\\left|x-1\right|+\dfrac{2}{y-1}=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\left|x-1\right|-\dfrac{5}{y-1}=-3\\2\left|x-1\right|+\dfrac{4}{y-1}=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{9}{y-1}=-9\\\left|x-1\right|+\dfrac{2}{y-1}=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\\left|x-1\right|=3-\dfrac{2}{2}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x\in\left\{3;-1\right\}\end{matrix}\right.\)

3: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x-5}+\dfrac{12}{\sqrt{y}-2}=4\\\dfrac{2}{x-5}-\dfrac{1}{\sqrt{y}-2}=-9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{13}{\sqrt{y}-2}=13\\\dfrac{1}{x-5}=2-\dfrac{6}{\sqrt{y}-2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=9\\\dfrac{1}{x-5}=2-\dfrac{6}{3-2}=2-\dfrac{6}{1}=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=9\\x-5=-\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{19}{4}\\y=9\end{matrix}\right.\)

17 tháng 1 2018

hỏi trước tí, bạn biết giải cái hệ này chứ?

\(\left\{{}\begin{matrix}2x+y=3\\2x-3y=1\end{matrix}\right.\)

28 tháng 12 2021

Xem lại đề

1 tháng 1 2023

- Đk: \(xy\ne0\)

\(\left\{{}\begin{matrix}x^2+\dfrac{1}{y^2}+x+\dfrac{1}{y}=4\left(1\right)\\x^3+\dfrac{1}{y^3}+\dfrac{x}{y}\left(x+\dfrac{1}{y}\right)=4\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Rightarrow\left(x+\dfrac{1}{y}\right)^2+\left(x+\dfrac{1}{y}\right)-2.\dfrac{x}{y}=4\)

\(\left(2\right)\Rightarrow\left(x+\dfrac{1}{y}\right)\left(x^2-\dfrac{x}{y}+\dfrac{1}{y^2}\right)+\dfrac{x}{y}\left(x+\dfrac{1}{y}\right)=4\)

\(\Rightarrow\left(x+\dfrac{1}{y}\right)\left(x^2+\dfrac{1}{y^2}\right)=4\)

\(\Rightarrow\left(x+\dfrac{1}{y}\right)\left[\left(x+\dfrac{1}{y}\right)^2-2.\dfrac{x}{y}\right]=4\)

\(\Rightarrow\left(x+\dfrac{1}{y}\right)^3-2\left(x+\dfrac{1}{y}\right).\dfrac{x}{y}=4\)

Đặt \(m=x+\dfrac{1}{y};n=\dfrac{x}{y}\left(m,n\ne0\right)\). Khi đó ta có:

\(\left\{{}\begin{matrix}m^2+m-2n=4\left(3\right)\\m^3-2mn=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-2n=4-m\\m\left(m^2-2n\right)=4\end{matrix}\right.\)

\(\Rightarrow m\left(4-m\right)=4\)

\(\Leftrightarrow m^2-4m+4=0\)

\(\Leftrightarrow\left(m-2\right)^2=0\)

\(\Leftrightarrow m=2\). Thay vào (3) ta được:

\(2^2+2-2n=4\)

\(\Leftrightarrow n=1\)

\(\Rightarrow\left\{{}\begin{matrix}x+\dfrac{1}{y}=2\\\dfrac{x}{y}=1\end{matrix}\right.\)

\(\Rightarrow x,\dfrac{1}{y}\) là 2 nghiệm của phương trình \(X^2-2X+1\).

\(\Delta=\left(-2\right)^2-4.1.1=0\)

\(\Rightarrow\)Phương trình có nghiệm kép \(X_{1,2}=\dfrac{2}{2}=1\)

\(\Rightarrow x=\dfrac{1}{y}=1\Rightarrow x=y=1\)

Vậy hệ đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(1;1\right)\)

 

1 tháng 2 2019

\(a)\left\{{}\begin{matrix}2x-y=3\\x+2y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-y=3\\2x+4y=-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-5y=5\\2x+4y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=1\end{matrix}\right.\)

Vậy nghiệm hệ phương trình là (1; -1)

\(b)\left\{{}\begin{matrix}\dfrac{3}{2}x-y=\dfrac{1}{2}\\3x-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-2y=1\\3x-2y=1\end{matrix}\right.\Leftrightarrow0x-0y=0\left(VSN\right)\)

Vậy hệ phương trình vô số nghiệm

1 tháng 2 2019

\(c)\left\{{}\begin{matrix}5\left(x+2y\right)=3x-1\\2x+4=3\left(x-5y\right)-12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x+10y=3x-1\\2x+4=3x-15y-12\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5x-3x+10y=-1\\2x-3x+15y=-12-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+10y=-1\\-x+15y=-16\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+10y=-1\\-2x+30y=-32\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}40y=-33\\-2x+30y=-32\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{33}{40}\\x=\dfrac{29}{8}\end{matrix}\right.\)

Vậy nghiệm hệ phương trình là \(\left(\dfrac{29}{8};-\dfrac{33}{40}\right)\)