Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)\(\left\{{}\begin{matrix}2\sqrt{3}x-2y=2\\5\sqrt{2}x+2y=\sqrt{6}\end{matrix}\right.< =>\left\{{}\begin{matrix}x\left(2\sqrt{3}+5\sqrt{2}\right)=2+\sqrt{6}\\5\sqrt{2}x+2y=\sqrt{6}\end{matrix}\right.\)
\(< =>\left\{{}\begin{matrix}x=\dfrac{2+\sqrt{6}}{2\sqrt{3}+5\sqrt{2}}=\dfrac{3\sqrt{3}+2\sqrt{2}}{19}\\5\sqrt{2}.\dfrac{3\sqrt{3}+2\sqrt{2}}{19}+2y=\sqrt{6}\end{matrix}\right.< =>\left\{{}\begin{matrix}x=\dfrac{3\sqrt{3}+2\sqrt{2}}{19}\\y=\dfrac{-10+2\sqrt{6}}{19}\end{matrix}\right.\)Vậy, ..................
a) \(\left\{{}\begin{matrix}\dfrac{15}{8}x+\dfrac{5}{3}y=40\\\dfrac{15}{8}x-\dfrac{9}{20}y=\dfrac{33}{4}\end{matrix}\right.< =>\left\{{}\begin{matrix}\dfrac{127}{60}y=\dfrac{127}{4}\\\dfrac{15}{8}x-\dfrac{9}{20}y=\dfrac{33}{4}\end{matrix}\right.\)
\(< =>\left\{{}\begin{matrix}y=15\\\dfrac{15}{8}x-\dfrac{9}{20}.15=\dfrac{33}{4}\end{matrix}\right.< =>\left\{{}\begin{matrix}y=15\\x=8\end{matrix}\right.\)
Vậy, ..........
a) \(\left\{{}\begin{matrix}5y-5x=xy\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{4}{5}\end{matrix}\right.\) \(\Leftrightarrow\)\(\left\{{}\begin{matrix}5y-5x=xy\\\dfrac{x+y}{xy}=\dfrac{4}{5}\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left\{{}\begin{matrix}5y-5x=xy\\5\left(x+y\right)=4xy\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}5y-5x=xy\\5\left(x+y\right)=4\left(5y-5x\right)\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left\{{}\begin{matrix}5y-5x=xy\\5x+5y=20y-20x\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}5y-5x=xy\\5x+5y-20y+20x=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left\{{}\begin{matrix}5y-5x=xy\\-15y+25x=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}5y-5x=xy\\-5\left(3y-5x\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left\{{}\begin{matrix}5y-5x=xy\\3y-5x=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}5y-5x=xy\\5x=3y\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}5y-3y=xy\\5x=3y\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left\{{}\begin{matrix}2y=xy\\5x=3y\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=2\\y=\dfrac{10}{3}\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\dfrac{1}{2x-3y}+\dfrac{5}{3x+y}=\dfrac{5}{8}\\\dfrac{2}{2x-3y}-\dfrac{5}{3x+y}=\dfrac{-3}{8}\end{matrix}\right.\)
Đặt \(\dfrac{1}{2x-3y}=a;\dfrac{1}{3x+y}=b\)
=> hpt <=> \(\left\{{}\begin{matrix}a+5b=\dfrac{5}{8}\\2a-5b=\dfrac{-3}{8}\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left\{{}\begin{matrix}a+5b=\dfrac{5}{8}\\2a-5b+a+5b=\dfrac{-3}{8}+\dfrac{5}{8}=0,25\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left\{{}\begin{matrix}a+5b=\dfrac{5}{8}\\3a=0,25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+5b=\dfrac{5}{8}\\a=\dfrac{1}{12}\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left\{{}\begin{matrix}a=\dfrac{1}{12}\\b=\dfrac{13}{120}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2x-3y}=\dfrac{1}{12}\\\dfrac{1}{3x+y}=\dfrac{13}{120}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-3y=12\\3x+y=\dfrac{120}{13}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{516}{143}\\y=-\dfrac{228}{143}\end{matrix}\right.\)
hỏi trước tí, bạn biết giải cái hệ này chứ?
\(\left\{{}\begin{matrix}2x+y=3\\2x-3y=1\end{matrix}\right.\)
a) ĐK xác định : x≠0;y≠0
ta có : \(\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{6}{y}=9\\\dfrac{2}{x}-\dfrac{6}{y}=7\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\dfrac{7}{x}=16\\\dfrac{2}{x}-\dfrac{6}{y}=7\end{matrix}\right.< =>\left\{{}\begin{matrix}x=\dfrac{7}{16}\\y=-\dfrac{42}{17}\end{matrix}\right.\)
Vậy S = {(\(\dfrac{7}{16};-\dfrac{42}{17}\))}
b) Đk xác định : x≠0;y≠0
ta có : \(\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{1}{y}=14\\\dfrac{8}{x}-\dfrac{1}{y}=-8\end{matrix}\right.< =>\left\{{}\begin{matrix}\dfrac{13}{x}=6\\\dfrac{5}{x}+\dfrac{1}{y}=14\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=\dfrac{13}{6}\\y=\dfrac{13}{152}\end{matrix}\right.\)
Vậy S={(\(\dfrac{13}{6};\dfrac{13}{152}\))}
c) ĐK xác định : x≠0;y≠0
ta có : \(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{7}{y}=21\\-\dfrac{2}{x}-\dfrac{5}{y}=-11\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\dfrac{2}{y}=10\\\dfrac{2}{x}+\dfrac{7}{y}=21\end{matrix}\right.< =>\left\{{}\begin{matrix}y=\dfrac{1}{5}\\x=-\dfrac{1}{7}\end{matrix}\right.\)
Vậy S={(\(-\dfrac{1}{7};\dfrac{1}{5}\))}
d) ĐK xác định : x≠0;y≠0
ta có : \(\left\{{}\begin{matrix}\dfrac{9}{x}+\dfrac{2}{y}=22\\\dfrac{5}{x}-\dfrac{2}{y}=13\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\dfrac{14}{x}=35\\\dfrac{5}{x}-\dfrac{2}{y}=13\end{matrix}\right.< =>\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=-4\end{matrix}\right.\)
Vậy S={(0,4;-4)}
e) ĐKXĐ : x≠0;y≠0
ta có : \(\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{5}{y}=10\\-\dfrac{3}{x}-\dfrac{7}{y}=8\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}-\dfrac{2}{y}=18\\\dfrac{3}{x}+\dfrac{5}{y}=10\end{matrix}\right.< =>\left\{{}\begin{matrix}y=-\dfrac{1}{9}\\x=\dfrac{3}{55}\end{matrix}\right.\) 'Vậy....
a) \(\left\{{}\begin{matrix}\left(x+3\right)\left(y+5\right)=\left(x+1\right)\left(y+8\right)\\\left(2x-3\right)\left(5y+7\right)=2\left(5x-6\right)\left(y+1\right)\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}xy+5x+3y+15=xy+8x+y+8\\10xy+14x-15y-21=10xy+10x-12y-12\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}-3x+2y=-7\\4x-3y=9\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}-9x+6y=-21\\8x-6y=18\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}-x=-3\\8x-6y=18\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=3\\8.3-6y=18\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
Vậy hệ phương trình có nghiệm (x;y)=(3;1)
b) ĐKXĐ:\(\left\{{}\begin{matrix}2y-5\ne0\\3y-4\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y\ne\dfrac{5}{2}\\y\ne\dfrac{4}{3}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{2x-3}{2y-5}=\dfrac{3x+1}{3y-4}\\2\left(x-3\right)-3\left(y+2\right)=-16\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}\left(2x-3\right)\left(3y-4\right)=\left(3x+1\right)\left(2y-5\right)\\2x-6-3y-6=-16\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}6xy-8x-9y+12=6xy-15x+2y-5\\2x-3y=-4\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}7x-11y=-17\\2x-3y=-4\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}14x-22y=-34\\14x-21y=-28\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}14x-22y=-34\\-y=-6\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}14x-22.6=-34\\y=6\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=7\left(TM\right)\\y=6\left(TM\right)\end{matrix}\right.\)
Vậy hệ phương trình có nghiệm (x;y)=(7;6)
\(a.\left\{{}\begin{matrix}4\dfrac{1}{x}+\dfrac{1}{y}=12\\\dfrac{1}{x}+\dfrac{1}{y}=-3\end{matrix}\right.\) (1)
ĐK xác định : x≠0 ; y≠0
Đặt ẩn phụ : a = \(\dfrac{1}{x}\) ; b = \(\dfrac{1}{y}\)
Thay vào (1) ta được :
\(\left\{{}\begin{matrix}4a+b=12\\a+b=-3\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}3a=15\\a+b=-3\end{matrix}\right.< =>\left\{{}\begin{matrix}a=5\\b=-8\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=-\dfrac{1}{8}\end{matrix}\right.\)
Vậy S = {(\(\dfrac{1}{5};-\dfrac{1}{8}\))}
\(b.\left\{{}\begin{matrix}5\dfrac{1}{x}+2\dfrac{1}{y}=6\\2\dfrac{1}{x}-\dfrac{1}{y}=3\end{matrix}\right.\) (2)
ĐK xác định : x≠0 ; y≠0
Đặt ẩn phụ : a = 1/x ; b = 1/y
Thay vào (2) ta được : \(\left\{{}\begin{matrix}5a+2b=6\\2a-b=3\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}5a+2b=6\\4a-2b=6\end{matrix}\right.< =>\left\{{}\begin{matrix}9a=12\\2a-b=3\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}a=\dfrac{4}{3}\\b=-\dfrac{1}{3}\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=\dfrac{3}{4}\\y=-3\end{matrix}\right.\)
Vậy S = {(\(\dfrac{3}{4};-3\) )}
c) \(\left\{{}\begin{matrix}3\dfrac{1}{x}-6\dfrac{1}{y}=2\\\dfrac{1}{x}-\dfrac{1}{y}=5\end{matrix}\right.\)
ĐK xác định : x≠0 ; y ≠0
Áp dụng quy tác cộng đại số ta có :
\(\left\{{}\begin{matrix}3\dfrac{1}{x}-6\dfrac{1}{y}=2\\\dfrac{1}{x}-\dfrac{1}{y}=5\end{matrix}\right.< =>\left\{{}\begin{matrix}3\dfrac{1}{x}-6\dfrac{1}{y}=2\\3\dfrac{1}{x}-3\dfrac{1}{y}=15\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}-3\dfrac{1}{y}=-13\\\dfrac{1}{x}-\dfrac{1}{y}=5\end{matrix}\right.< =>\left\{{}\begin{matrix}y=\dfrac{3}{13}\\x=\dfrac{3}{28}\end{matrix}\right.\)
Vậy S = {(\(\dfrac{3}{28};\dfrac{3}{13}\))}
d) \(\left\{{}\begin{matrix}\dfrac{1}{x}-4\dfrac{1}{y}=5\\2\dfrac{1}{x}-3\dfrac{1}{y}=1\end{matrix}\right.\)
ĐK xác định : x≠0 ; y≠0
áp dụng quy tắc cộng đại số ta có :
\(\left\{{}\begin{matrix}\dfrac{1}{x}-4\dfrac{1}{y}=5\\2\dfrac{1}{x}-3\dfrac{1}{y}=1\end{matrix}\right.< =>\left\{{}\begin{matrix}2\dfrac{1}{x}-8\dfrac{1}{y}=10\\2\dfrac{1}{x}-3\dfrac{1}{y}=1\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}-5\dfrac{1}{y}=9\\\dfrac{1}{x}-4\dfrac{1}{y}=5\end{matrix}\right.< =>\left\{{}\begin{matrix}y=-\dfrac{5}{9}\\x=-\dfrac{5}{11}\end{matrix}\right.\)
Vậy S = {(\(-\dfrac{5}{11};-\dfrac{5}{9}\))}
e) ĐK xác định x≠0 ; y≠0
\(\left\{{}\begin{matrix}\dfrac{1}{x}-3\dfrac{1}{y}=4\\6\dfrac{1}{x}-\dfrac{1}{y}=2\end{matrix}\right.< =>\left\{{}\begin{matrix}\dfrac{1}{x}-3\dfrac{1}{y}=4\\18\dfrac{1}{x}-3\dfrac{1}{y}=6\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}-17\dfrac{1}{x}=-2\\\dfrac{1}{x}-3\dfrac{1}{y}=4\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}x=\dfrac{17}{2}\\y=-\dfrac{17}{22}\end{matrix}\right.\)
Vậy S={(\(\dfrac{17}{2};-\dfrac{17}{22}\))}
Lời giải;
Từ PT(2) suy ra $5x^2=\frac{16y^2}{5}$
$\Leftrightarrow x^2=(\frac{4}{5}y)^2$
$\Leftrightarrow x=\frac{4}{5}y$ hoặc $x=\frac{-4}{5}y$
Nếu $x=\frac{4}{5}y$ thì: thay vào PT(1):
$4y+\frac{16}{y}=360$
$\Leftrightarrow y+\frac{4}{y}=90$
$\Leftrightarrow y^2-90y+4=0$
$\Leftrightarrow (y-45)^2=2021$
$\Leftrightarrow y-45=\pm \sqrt{2021}$
$\Leftrightarrow y=45\pm \sqrt{2021}$
$\Rightarrow x=36\pm \frac{4}{5}\sqrt{2021}$ (tương ứng)
Trường hợp $x=\frac{-4}{5}y$ giải tương tự.