K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(780^2-220^2\right):\left(125^2+150\cdot125+75^2\right)\)

\(=\dfrac{1000\cdot540}{200^2}\)

\(=\dfrac{10000\cdot54}{40000}=\dfrac{54}{4}=\dfrac{27}{2}\)

23 tháng 11 2016

a/ A = 1002 - 992 + 982 -...+22 - 12

= (1002 - 992) + (982 - 972) +...+ (22 - 12)

= 199 + 195 + 191 + ... + 1

= (\(\frac{199-1}{4}+1\))(\(\frac{199+1}{2}\)) = 5050

23 tháng 11 2016

b/ Y chang câu a luôn nha

c/ \(C=\frac{780^2-220^2}{125^2+150.125+75^2}=\frac{\left(780-220\right)\left(780+220\right)}{\left(125+75\right)^2}\)

\(=\frac{560.1000}{200^2}=14\)

8 tháng 7 2018

1272 + 146.127 + 732

= 1272 + 2 . 73 .127 + 732

= (127 + 73 ) 2

= 200 2

15 tháng 8 2017

Bài 1:

a,\(127^2+146.127+73^2=127^2+2.127.73+73^2\)\(=\left(127+73\right)^2=200^2=40000\)

b,\(9^8.2^8-\left(18^4-1\right)\left(18^4+1\right)\)

\(18^8-\left(18^8-1\right)=1\)

\(c,100^2-99^2+98^2-97^2+...+2^2-1\)

\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)\(=199+195+...+3\)

áp dụng công thức Gauss ta đc đáp án là:10100

d, mk khỏi ghi đề dài dòng:

\(\dfrac{\left(780-220\right)\left(780+220\right)}{\left(125+75\right)^2}=\dfrac{560000}{40000}=14\)Bài 2:

\(A=\left(2-1\right)\left(2+1\right)\)\(\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)Cứ tiếp tục ta đc \(A=2^{32}-1< B=2^{32}\)

\(\left(3-1\right)C=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)...\left(3^2+16\right)\)giải như câu a đc:\(\left(3-1\right)C=3^{32}-1\)

\(\Rightarrow C=\dfrac{3^{32}-1}{3-1}=\dfrac{3^{32}-1}{2}< D=3^{32}-1\)

21 tháng 8 2017

1c,

\(=100^2-99^2+98^2-97^2+...+2^2-1^2\\ =\left(100+99\right)\left(100-99\right)+\left(98+97\right)\left(98-97\right)+...+\left(2+1\right)\left(2-1\right)\\ =\left(100+99\right)\cdot1+\left(98+97\right)\cdot1+...+\left(2+1\right)\cdot1\\ =100+99+98+97+...+2+1\\ =\dfrac{100\cdot101}{2}=5050\)

\(B=\frac{780^2-220^2}{125^2+150.125+75^2}\)\(=\frac{\left(780+220\right).\left(780-220\right)}{\left(125+75\right)^2}\)\(=\frac{1000.560}{200^2}\)\(=\frac{560000}{40000}=14\)

16 tháng 10 2017

A = x 2x2 - 4 và 24và2 tại x = 1.856; y = -0,988

B = ( x 4 - y 4 )(x4-và4) : ( x 2 + y 2 )(x2+và2) tại x = 2003 ; y= 2004

A= chắc sai đề

B=( x 4 - y 4 )(x4-và4) : ( x 2 + y 2 )

=(x^2+y^2).(x^2-y^2)/(x^2+y^2)

=x^2-y^2

=(x-y)(x+y)

thay số =(2003-2004)(2003+2004)=-4007

16 tháng 10 2017

2

phần a chắc lại có vấn đề

B=(780^2-220^2)/125^2+150.125+75^2

=(780-220)(780+220)/(125+75)^2

=560.1000/200^2

7/5

c=1002 - 992 + 982 - 972 +....+ 22 - 1

=(100-99)(100+99)........(2+1)(2-1)

=100+99+...+1

=5050

26 tháng 6 2015

\(A=\left(100^2-99^2\right)+\left(98^2-97^2\right)+...+\left(2^2-1^2\right)\)

\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)

\(=100+99+98+97+...+2+1\)

\(=\left(100+1\right).\frac{100-1}{2}=\frac{101.99}{2}=\frac{9999}{2}\)

1 tháng 9 2015

vào câu hỏi tương tự 

lik-e cho mình nhé

Bạn hãy click vào trong câu hỏi tương tự nhé !

13 tháng 6 2018

a) \(127^2+146.127+73^2=127^2+2.73.127+73^2=\left(127+73\right)^2=40000\)b) \(9^8.2^8-\left(18^4-1\right)\left(18^4+1\right)=18^8-\left(18^8-1\right)=1\)

c) \(100^2-99^2+98^2-97^2+...+2^2-1^2\)

\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)\(=100+99+98+97+...+2+1\)

\(=\dfrac{100\left(100+1\right)}{2}=5050\)

13 tháng 6 2018

d) \(\left(20^2+18^2+16^2+...+4^2+2^2\right)-\left(19^2+17^2+15^2+...+3^2+1^2\right)\) \(=20^2-19^2+18^2-17^2+16^2-15^2+...+4^2-3^2+2^2-1^2\)

\(=\left(20-19\right)\left(20+19\right)+\left(18-17\right)\left(18+17\right)+...+\left(2-1\right)\left(2+1\right)\)\(=20+19+18+17+...+2+1\)

\(=\dfrac{20\left(20+1\right)}{2}=210\)

e) \(\dfrac{780^2-220^2}{125^2+150.125+75^2}\)

\(=\dfrac{\left(780-220\right)\left(780+220\right)}{\left(125+75\right)^2}=\dfrac{560.1000}{200}=2800\)