K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2020

Vì \(9>5\)\(\Rightarrow\sqrt{9}>\sqrt{5}\)\(\Rightarrow3>\sqrt{5}\)\(\Rightarrow3-\sqrt{5}>0\)

mà \(3+\sqrt{5}>0\)

\(\Rightarrow\left(3-\sqrt{5}\right).\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right).\sqrt{3-\sqrt{5}}\)

\(=\sqrt{\left(3-\sqrt{5}\right)^2.\left(3+\sqrt{5}\right)}+\sqrt{\left(3+\sqrt{5}\right)^2.\left(3-\sqrt{5}\right)}\)

\(=\sqrt{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}+\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\)

\(=\sqrt{\left(9-5\right)\left(3-\sqrt{5}\right)}+\sqrt{\left(9-5\right).\left(3+\sqrt{5}\right)}\)

\(=\sqrt{4.\left(3-\sqrt{5}\right)}+\sqrt{4.\left(3+\sqrt{5}\right)}\)

\(=2.\sqrt{3-\sqrt{5}}+2.\sqrt{3+\sqrt{5}}\)