K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2017

\(\left(2017-\dfrac{5}{181}+\dfrac{1}{50}\right)-\left(4+\dfrac{3}{181}-\dfrac{2}{50}\right)+\left(1-\dfrac{8}{181}+\dfrac{3}{50}\right)\)

\(=2017-\dfrac{5}{181}+\dfrac{1}{50}-4-\dfrac{3}{181}+\dfrac{2}{50}+1-\dfrac{8}{181}+\dfrac{3}{50}\)

\(=2014+\dfrac{143}{4525}\)

\(=\dfrac{9113493}{4525}\)

8 tháng 7 2017

cam on nha Tuấn Anh Phan Nguyễn

12 tháng 12 2021

\(C=-\left[\dfrac{1}{3}\cdot\dfrac{\left(3+1\right)\cdot3}{2}+\dfrac{1}{4}\cdot\dfrac{\left(4+1\right)\cdot4}{2}+...+\dfrac{1}{50}\cdot\dfrac{\left(50+1\right)\cdot50}{2}\right]\\ C=-\left(\dfrac{1}{3}\cdot\dfrac{4\cdot3}{2}+\dfrac{1}{4}\cdot\dfrac{5\cdot4}{2}+...+\dfrac{1}{50}\cdot\dfrac{51\cdot50}{2}\right)\\ C=-\left(2+\dfrac{5}{2}+...+\dfrac{51}{2}\right)\\ C=-\dfrac{4+5+...+51}{2}=-\dfrac{\dfrac{\left(51+4\right)\left(51-4+1\right)}{2}}{2}=-\dfrac{55\cdot48}{4}=-660\)

12 tháng 12 2021

Thank!

 

28 tháng 5 2022

`1//([-1]/2)^2 . |+8|-(-1/2)^3:|-1/16|=1/4 .8+1/8 .16=2+2=4`

`2//|-0,25|-(-3/2)^2:1/4+3/4 .2017^0=0,25-2,25.4+0,75.1=0,25-9+0,75=-8,75+0,75-8`

`3//|2/3-5/6|.(3,6:2 2/5)^3=|-1/6|.(3/2)^3=1/6 . 27/8=9/16`

`4//|(-0,5)^2+7/2|.10-(29/30-7/15):(-2017/2018)^0=|1/4+7/2|.10-1/2:1=|15/4|.10-1/2=15/4 .10-1/2=75/2-1/2=37`

`5// 8/3+(3-1/2)^2-|[-7]/3|=8/3+(5/2)^2-7/3=8/3+25/4-7/3=107/12-7/3=79/12`

6 tháng 5 2017

tự xử đi

6 tháng 5 2017

mk ăn mày lun ak

5 tháng 5 2018

dài vậy?Ghi đáp án thôi nhé!hiha

6 tháng 5 2018

1like

7 tháng 5 2017

Câu 1:

a) \(\left(\dfrac{4}{8}+\dfrac{1}{2}\right):\left(\dfrac{3}{5}-\dfrac{8}{7}\right)\)

\(=\left(\dfrac{1}{2}+\dfrac{1}{2}\right):\left(\dfrac{21}{35}-\dfrac{40}{35}\right)\)

\(=1:\dfrac{-19}{35}\)

\(=\dfrac{35}{-19}\)

b) \(-1\dfrac{3}{5}+0,34-50\%\)

\(=-\dfrac{8}{5}+\dfrac{34}{100}-\dfrac{50}{100}\)

\(=-\dfrac{160}{100}+\dfrac{34}{100}-\dfrac{50}{100}\)

\(=-\dfrac{44}{25}\)

Câu 2:

A = 357 - 62 - (-62 - 643)

A = 357 - 62 + 62 + 643

A = (357 + 643) - (62 - 62)

A = 1000 - 0

A = 1000

Câu 3:

\(\left(\dfrac{x}{5}-1\right):\left(-5\right)=\dfrac{1}{10}\)

\(\dfrac{x}{5}-1=\dfrac{1}{10}.\left(-5\right)\)

\(\dfrac{x}{5}-1=\dfrac{-1}{2}\)

\(\dfrac{x}{5}=\dfrac{-1}{2}+1\)

\(\dfrac{x}{5}=\dfrac{1}{2}\Rightarrow x=\dfrac{1.5}{2}=2,5\)

26 tháng 4 2018

\(\left(1+\dfrac{1}{2}\right)+\left(1+\dfrac{1}{2^2}\right)+...+\left(1+\dfrac{1}{2^{50}}\right)\)

= \(\left(1+1+1+...+1\right)+\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{50}}\right)\)(50 số 1 )

= \(50+\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{50}}\right)\)

A =\(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{50}}\)

⇒ 2A = \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}\)

⇒ 2A - A =\(1-\dfrac{1}{2^{50}}\)

=50+1-\(\dfrac{1}{2^{50}}\)=51-\(\dfrac{1}{2^{50}}>3\)

a, \(-1\dfrac{2}{3}+\dfrac{3}{4}-\dfrac{1}{2}+2\dfrac{1}{6}\\ =-\dfrac{5}{3}+\dfrac{3}{4}-\dfrac{1}{2}+\dfrac{13}{6}\\ =\dfrac{-5.4+3.3-1.6+13.2}{12}=\dfrac{9}{12}=\dfrac{3}{4}\)

b, \(\dfrac{11}{50}\left(-17\dfrac{1}{2}\right)-\dfrac{11}{50}.82\dfrac{1}{2}\\ =\dfrac{11}{50}.\left(-17\dfrac{1}{2}-82\dfrac{1}{2}\right)=\dfrac{11}{50}.\left(-100\right)=-22\)

28 tháng 5 2017

a) \(-1\dfrac{2}{3}\) + \(\dfrac{3}{4}\) \(-\) \(\dfrac{1}{2}\) + \(2\dfrac{1}{6}\)

=\(-\dfrac{5}{3}\) + \(\dfrac{3}{4}\) \(-\) \(\dfrac{1}{2}\) + \(\dfrac{13}{6}\)\()\)

=\(-\) \(\dfrac{20}{12}\) + \(\dfrac{9}{12}\) \(-\) \(\dfrac{6}{12}\) + \(\dfrac{26}{12}\)

= \((\)\(\dfrac{-20}{12}\) + \(\dfrac{26}{12}\) \()\) + \((\) \(\dfrac{9}{12}\) \(-\) \(\dfrac{6}{12}\) \()\)

= \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\)

= \(\dfrac{3}{4}\)

b)\(\dfrac{11}{50}\) \((\) \(-17\dfrac{1}{2}\) \()\) \(-\) \(\dfrac{11}{50}\) .\(82\dfrac{1}{2}\)

= \(\dfrac{11}{50}\) . \(-\dfrac{35}{2}\) \(-\) \(\dfrac{11}{50}\) . \(\dfrac{165}{2}\)

= \(\dfrac{11}{50}\). \((\) \(-\dfrac{35}{2}\) \(-\) \(\dfrac{165}{2}\) \()\)

=\(\dfrac{11}{50}\). \(-\)\(100\)

= \(-22\)

Chúc bạn học thật tốt nha ! vuihihiok

10 tháng 3 2019

\(\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{2n-1}\right)-\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{2n}\right)=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{2n-1}+\frac{1}{2n}\right)-2\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{2n}\right)=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2n-1}+\frac{1}{2n}-\frac{1}{1}-\frac{1}{2}-....-\frac{1}{n}=\frac{1}{n+1}+\frac{1}{n+2}+....+\frac{1}{2n}\left(\text{đpcm}\right)\)