Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\tan40.\cot40+\frac{\sin50}{\cos40}\)
\(=1+\frac{\cos40}{\cos40}=1+1=2\)
\(A=sin^210+sin^220+sin^230+sin^280+sin^270+sin^260=sin^210+sin^220+sin^230+cos^210+cos^220+cos^230=1+1+1=3\)\(B=\left(1+tan^2\alpha\right)\left(1-sin^2\alpha\right)+\left(1+cot^2\alpha\right)\left(1-cos^2\alpha\right)=\dfrac{1}{cos^2\alpha}.cos^2\alpha+\dfrac{1}{sin^2\alpha}.sin^2\alpha=1+1=2\)
ta có : \(5tan40.tan50-cos^247-3-cos^243\)
\(=5tan40.tan\left(90-40\right)-cos^247-cos^2\left(90-47\right)-3\)
\(=5.tan40.cot40-cos^247-sin^247-3=5-1-3=1\)
\(\frac{sin^2\alpha}{cos\alpha.\left(1+\frac{sin\alpha}{cos\alpha}\right)}-\frac{cos^2\alpha}{sin\alpha.\left(1+\frac{cos\alpha}{sin\alpha}\right)}=\frac{sin^2\alpha}{cos\alpha+sin\alpha}-\frac{cos^2\alpha}{sin\alpha+cos\alpha}=\frac{\left(sin\alpha+cos\alpha\right).\left(sin\alpha-cos\alpha\right)}{sin\alpha+cos\alpha}=sin\alpha-cos\alpha\)
\(=\left(1+tan^220\right).cos^220-tan40.cot\left(90-50\right)\)
\(=\left(1+\frac{sin^220}{cos^220}\right).cos^220-tan40.cot40\)
\(=cos^220+sin^220-1\)
\(=1-1=0\)