\(\left|-4,5x\right|=6+2,5x\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2019

|-4,5x| = 6 + 2,5x

TH1: |-4,5x| = -4,5x nếu x ≤ 0 (-4,5x ≥ 0)

-4,5x = 6 + 2,5x

⇔ -4,5x - 2,5x = 6

⇔ -7x = 6

⇔ x = \(\frac{-6}{7}\)(TM)

TH2: |-4,5x| = 4,5x nếu x > 0 (-4,5x < 0)

4,5x = 6 + 2,5x

⇔ 4,5x - 2,5x = 6

⇔2x = 6

⇔x = 3(TM)

Vậy nghiệm của PT là x = \(\frac{-6}{7}\); x = 3

\(\frac{-6}{7}\)\(\frac{-6}{7}\)

a: \(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{2}\\\left(\dfrac{1}{2}x\right)^2-\left(2x-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{2}\\\left(\dfrac{1}{2}x-2x+3\right)\left(\dfrac{1}{2}x+2x-3\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{2}\\\left(3-\dfrac{3}{2}x\right)\left(\dfrac{5}{2}x-3\right)=0\end{matrix}\right.\Leftrightarrow x\in\left\{\dfrac{6}{5}\right\}\)

b: \(\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{4}{3}\\\left(3x+4\right)^2-\left(2x\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{4}{3}\\\left(5x+4\right)\left(x+4\right)=0\end{matrix}\right.\)

\(\Leftrightarrow x=-\dfrac{4}{5}\)

c: \(\Leftrightarrow\left\{{}\begin{matrix}x>=12\\\left(5x-x+12\right)\left(5x+x-12\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=12\\\left(4x+12\right)\left(6x-12\right)=0\end{matrix}\right.\)

hay \(x\in\varnothing\)

d: \(\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{10}{3}\\\left(2,5x-1,5x-5\right)\left(2,5x+1,5x+5\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{10}{3}\\\left(x-5\right)\left(4x+5\right)=0\end{matrix}\right.\Leftrightarrow x\in\left\{-\dfrac{5}{4};5\right\}\)

7 tháng 6 2017

n) \(\left|3-x\right|+x^2-x\left(x+4\right)=0\)

\(\Rightarrow\left|3-x\right|+x^2-x^2-4x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3-x-4x=0\left(đk:3-x\ge0\right)\\-\left(3-x\right)-4x=0\left(đk:3-x< 0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\left(đk:x\le3\right)\\x=-1\left(đk:x>3\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\\x\in\varnothing\end{matrix}\right.\)

Vậy \(x=\dfrac{3}{5}\)

m) \(\left(x-1\right)^2+\left|x+21\right|-x^2-13=0\)

\(\Rightarrow x^2-2x+1+\left|x+21\right|-x^2-13=0\)

\(\Leftrightarrow-2x-12+\left|x+21\right|=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-2x-12+x+21=0\left(đk:x+21\ge0\right)\\-2x-12-\left(x+21\right)=0\left(đk:x+21< 0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=9\left(đk:x\ge-21\right)\\x=-11\left(đk:x< -21\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=9\\x\in\varnothing\end{matrix}\right.\)

Vậy \(x=9\)

7 tháng 6 2017

e) \(\left|5x\right|=3x-2\)

\(\Rightarrow5\cdot\left|x\right|=3x-2\)

\(\Leftrightarrow5\cdot\left|x\right|-3x=-2\)

\(\Leftrightarrow\left[{}\begin{matrix}5x-3x=-2\left(đk:x\ge0\right)\\5\cdot\left(-x\right)-3x=-2\left(đk:x< 0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(đk:x\ge0\right)\\x=\dfrac{1}{4}\left(đk:x< 0\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x\in\varnothing\\x\in\varnothing\end{matrix}\right.\)

Vậy \(x\in\varnothing\)

g) \(\left|-2,5x\right|=x-12\)

\(\Rightarrow2,5\cdot\left|x\right|=x-12\)

\(\Leftrightarrow2x5\cdot\left|x\right|-x=-12\)

\(\Leftrightarrow\left[{}\begin{matrix}2,5x-x=-12\left(đk:x\ge0\right)\\2,5\cdot\left(-x\right)-x=-12\left(đk:x< 0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-8\left(đk:x\ge0\right)\\x=\dfrac{24}{7}\left(đk:x< 0\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x\in\varnothing\\x\in\varnothing\end{matrix}\right.\)

Vậy \(x\in\varnothing\)

9 tháng 2 2020

\(a.-\frac{5}{9}x+1=\frac{2}{3}x-10\\ \Leftrightarrow-\frac{5}{9}x-\frac{2}{3}x=-1-10\\\Leftrightarrow -\frac{11}{9}x=-11\\ \Leftrightarrow x=9\)

Vậy nghiệm của phương trình trên là \(9\)

\(b.3-5x=6x-2\\\Leftrightarrow -5x-6x=-3-2\\\Leftrightarrow -11x=-5\\ \Leftrightarrow x=\frac{5}{11}\)

Vậy nghiệm của phương trình trên là \(\frac{5}{11}\)

\(c.3\left(x-1\right)=5+3x\\ \Leftrightarrow3x-3=5+3x\\ \Leftrightarrow3x-3x=3+5\\\Leftrightarrow 0x=8\)

\(\Rightarrow\) Vô nghiệm

\(d.2\left(1-2,5x\right)+5x=0\\ \Leftrightarrow2-5x+5x=0\\ \Leftrightarrow2=0\left(sai\right)\)

\(\Rightarrow\) Vô nghĩa (Vô nghiệm)

2 tháng 6 2018

a) \(\left|4+2x\right|=-4x\)

TH1 : \(4+2x\ge0\Leftrightarrow2x\ge-4\Leftrightarrow x\ge-2\)

\(4+2x=-4x\)

\(\Leftrightarrow2x+4x=-4\)

\(\Leftrightarrow6x=-4\)

\(\Leftrightarrow x=-\dfrac{2}{3}\) (t/m)

TH2 : \(4+2x< 0\Leftrightarrow2x< -4\Leftrightarrow x< -2\)

\(\text{- (4 + 2x) = -4x}\)

\(\Leftrightarrow-4-2x=-4x\)

\(\Leftrightarrow-2x+4x=4\)

\(\Leftrightarrow2x=4\)

\(\Leftrightarrow x=2\) (ko t/m)

\(S=\left\{-\dfrac{2}{3}\right\}\)

b) \(\left|-2,5x\right|=x-12\)

TH1 : \(-2,5x\ge0\Leftrightarrow x\le0\)

\(-2,5x=x-12\)

\(\Leftrightarrow-2,5x-x=-12\)

\(\Leftrightarrow-3,5x=-12\)

\(\Leftrightarrow x=\dfrac{24}{7}\) (ko t/m)

TH2 : \(-2,5x< 0\Leftrightarrow x>0\)

\(\text{2,5x = x - 12}\)

\(\Leftrightarrow2,5x-x=-12\)

\(\Leftrightarrow1,5x=-12\)

\(\Leftrightarrow x=-8\) (ko t/m)

\(S=\varnothing\)

c) \(\left|-2x\right|+x-5x-3=0\)

\(\Leftrightarrow\left|-2x\right|-4x-3=0\)

\(\Leftrightarrow\left|-2x\right|=3+4x\)

TH1 : \(-2x\ge0\Leftrightarrow x\le0\)

\(-2x=3+4x\)

\(\Leftrightarrow-2x-4x=3\)

\(\Leftrightarrow-6x=3\)

\(\Leftrightarrow x=-\dfrac{1}{2}\) (t/m)

TH2 : \(-2x< 0\Leftrightarrow x>0\)

\(\text{2x = 3 + 4x}\)

\(\Leftrightarrow2x-4x=3\)

\(\Leftrightarrow-2x=3\)

\(\Leftrightarrow x=-\dfrac{3}{2}\) (ko t/m)

\(S=\left\{-\dfrac{1}{2}\right\}\)

7 tháng 4 2018

a) ta có

|9+x| = 9+x thì 9+x ≥ 0 ⇔ x ≥ -9

|9+x|=-(9-x)thì 9+x <0 ⇔ x<-9

th1 với x ≥ -9

9+x=2x

⇔ 9=2x-x

⇔ 9=x (tmđk)

th2 với x < -9

-(9+x)=2x

⇔ -9-x=2x

⇔ -x-2x=9

⇔ -3x=9

⇔ x=-2 (ktm)

vậy phương trình có tập nghiệm là S+{ 9}

8 tháng 4 2018

b) Với : x < -6 , phương trình có dạng :

- x - 6 = 2x + 9

<=> -3x = 15

<=> x = - 5 ( không thỏa mãn )

Với : x ≥ - 6 , phương trình có dạng :

x + 6 = 2x + 9

<=> x = - 3 ( thỏa mãn)

Vậy , phương trình nhận : x = - 3 làm nghiệm duy nhất

c) Với : x < 0 , phương trình có dạng :

- 5x = 3x - 2

<=> -8x = -2

<=> x = \(\dfrac{1}{4}\) ( không thỏa mãn )

Với : x ≥ 0 , phương trình có dạng :
5x = 3x - 2

<=> 2x = -2

<=> x = -1 ( không thỏa mãn )

Vậy, phương trình đã cho vô nghiệm

NV
26 tháng 2 2020

1. \(x^2\left(x+1\right)+x+1=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow x+1=0\Rightarrow x=-1\)

2. \(\left(x-2\right)\left(6x+2\right)+\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-2\right)\left(6x+2+x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right).7x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\7x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)

NV
26 tháng 2 2020

3.

\(x^2-5x+6=0\)

\(\Leftrightarrow x^2-2x-3x+6=0\)

\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

4.

\(x^2-x-6=0\)

\(\Leftrightarrow x^2+2x-3x-6=0\)

\(\Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

4 tháng 4 2020

a, ĐKXĐ : \(\left\{{}\begin{matrix}x\ne\pm2\\x\ne0\end{matrix}\right.\)

Ta có : \(\frac{x-4}{x\left(x+2\right)}-\frac{1}{x\left(x-2\right)}=-\frac{2}{\left(x+2\right)\left(x-2\right)}\)

=> \(\frac{\left(x-4\right)\left(x-2\right)}{x\left(x+2\right)\left(x-2\right)}-\frac{x+2}{x\left(x-2\right)\left(x+2\right)}=-\frac{2x}{x\left(x+2\right)\left(x-2\right)}\)

=> \(\left(x-4\right)\left(x-2\right)-x-2=-2x\)

=> \(x^2-4x-2x+8-x-2=-2x\)

=> \(x^2-5x+6=0\)

=> \(\left(x-2\right)\left(x-3\right)=0\)

=> \(\left[{}\begin{matrix}x=2\\x=3\left(TM\right)\end{matrix}\right.\)

=> x = 3 .

Vậy phương trình trên có tập nghiệm là \(S=\left\{3\right\}\)

b, ĐKXĐ : \(x\ne0,-3,-6,-9,-12\)

Ta có : \(\frac{1}{x\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+9\right)}+\frac{1}{\left(x+9\right)\left(x+12\right)}=\frac{1}{16}\)

=> \(\frac{1}{x}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+9}+\frac{1}{x+9}-\frac{1}{x+12}=\frac{1}{16}\)

=> \(\frac{1}{x}-\frac{1}{x+12}=\frac{1}{16}\)

=> \(\frac{x+12}{x\left(x+12\right)}-\frac{x}{x\left(x+12\right)}=\frac{1}{16}\)

=> \(x\left(x+12\right)=192\)

=> \(x^2+12x-192=0\)

=> \(x^2+2x.6+36-228=0\)

=> \(\left(x+6\right)^2=288\)

=> \(\left[{}\begin{matrix}x=\sqrt{288}-6\\x=-\sqrt{288}-6\end{matrix}\right.\) ( TM )

Vậy phương trình có tập nghiệm là \(S=\left\{\pm\sqrt{288}-6\right\}\)