Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(2/3+3/4+...+99/100)x(1/2+2/3+3/4+...+98/99)-(1/2+2/3+...+99/100)x(2/3+3/4+4/5+...98/99)
ta cho nó dài hơn như sau
A=(2/3+3/4+4/5+5/6+....+98/99+99/100)
ta thấy các mẫu số và tử số giống nhau nên chệt tiêu các số
2:3:4:5...99 vậy ta còn các số 2/100
ta làm vậy với(1/2+2/3+3/4+.....+98/99) thi con 1/99
làm vậy với câu (1/2+2/3+...+99/100) thì ra la 1/100
vậy với (2/3+3/4+...+98/99) ra 2/99
xùy ra ta có 2/100.1/99-1/100.2/99=1/50x1/99-1/100x2/99=tự tinh nhe mình ngủ đây
\(\left(\frac{1}{2}-1\right):\left(\frac{1}{3}-1\right):....:\left(\frac{1}{100}-1\right)\text{ có số số lẻ thừa số âm nên bằng:}\)
\(-\left[\left(1-\frac{1}{2}\right):\left(1-\frac{1}{3}\right):...\left(1-\frac{1}{100}\right)\right]=-\left[\frac{1}{2}:\frac{2}{3}:\frac{3}{4}:......:\frac{99}{100}\right]=-\left(\frac{1.3.4...100}{2.2.3...99}\right)=-50\)
Mk lm đc câu a thôi nhé !
A= 150-(100-99+98-97+...-3+2-1)
từ 1-100 có 100 SH. Ta nhóm 4 số vs nhau như sau : (100-00+98-87)+(...)+(4-3+2-1)
Có tất cả số nhóm là : 100:4=25 nhóm. Mà mỗi nhóm ta tính có kết quả là 2, vậy tao có
A=150-(2.25)
A=150-50
A=100
Ta có :
M = \(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
M = \(\frac{1+\left(\frac{1}{99}+1\right)+\left(\frac{2}{98}+1\right)+\left(\frac{3}{91}+1\right)+...+\left(\frac{98}{2}+1\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
M = \(\frac{\frac{100}{100}+\frac{100}{99}+\frac{100}{98}+\frac{100}{97}+...+\frac{100}{2}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
M = \(\frac{100.\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+...+\frac{1}{2}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
M = \(100\)
N = \(\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-...-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)
N = \(\frac{\left(1-\frac{1}{9}\right)+\left(1-\frac{2}{10}\right)+\left(1-\frac{3}{11}\right)+...+\left(1-\frac{92}{100}\right)}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)
N = \(\frac{\frac{8}{9}+\frac{8}{10}+\frac{8}{11}+...+\frac{8}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)
N = \(\frac{8.\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}\right)}{\frac{1}{5}.\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}\right)}\)
N = \(40\)
\(\Rightarrow\)M : N = \(\frac{100}{40}\%=250\%\)
Ta có : 0+(-1)+2+(-3)+...+98+(-99)+100
= (0+100) + (-1-99)+(2+98)+..+(-49-51)+50
=100-100+100-100+...-100+50
=0+0+..+0+50 =50
K = (\(\frac{3^5}{3}+\frac{3^5}{3^2}+\frac{3^5}{3^3}+\frac{3^5}{3^4}\))+...+\(\left(\frac{3^{101}}{3^{97}}+\frac{3^{101}}{3^{98}}+\frac{3^{101}}{3^{99}}+\frac{3^{101}}{3^{100}}\right)\)
\(=\left(3^1+3^2+3^3+3^4\right)+...+\left(3^1+3^2+3^3+3^4\right)\)
\(=120+...+120\)(Có 25 số 120)
\(=25.120\)
\(=300\)
vậy ...
\(1+\left(-2\right)+3+\left(-4\right)+5+...+\left(-98\right)+99\)
\(=\left(1+3+5+...+99\right)+\left[\left(-2\right)+\left(-4\right)+...+\left(-98\right)\right]\)
\(=\frac{100.50}{2}+\frac{-100.49}{2}\)
\(=2500+\left(-2450\right)\)
\(=50\)
\(=[\left(-1\right)+\left(-2\right)+3+4]+..+[\left(-97\right)+\left(-98\right)+99+100]\)
\(=4+4+...+4\) (\(25\) số hạng \(4\))
\(=4.25\)
\(=100\)