Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Áp dụng định lí py-ta-go cho tam giác ABC vuông tại A ta có :
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow18^2+24^2=BC^2\)
\(\Leftrightarrow BC^2=900\)
\(\Leftrightarrow BC=30\left(cm\right)\)
Do CD là phân giác \(\widehat{ACB}\)
\(\Rightarrow\frac{AC}{AD}=\frac{BC}{BD}\Leftrightarrow\frac{24}{AD}=\frac{30}{BD}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\frac{24}{AD}=\frac{30}{BD}=\frac{24+30}{AD+BD}=\frac{54}{AB}=\frac{54}{18}=3\)
Ta có : \(\frac{24}{AD}=3\Leftrightarrow AD=8\left(cm\right)\)
\(\frac{30}{BD}=3\Leftrightarrow BD=10\left(cm\right)\)
Vậy BC = 30 cm
AD = 8 cm
BD = 10 cm
b)
Xét tam giác BHA và tam giác ABC có :
\(\widehat{BAC}=\widehat{AHB}\)
chung \(\widehat{ABC}\)
\(\Rightarrow\) tam giác BHA đồng dạng với tam giác ABC (g-g)
a: Xet ΔABC vuông tại A và ΔHAC vuông tạiH có
góc ACB chung
=>ΔABC đồng dạng với ΔHAC
=>CA/CH=CB/CA
=>CA^2=CH*CB
b: AE/HE=CA/CH
BD/AD=CB/CA
mà CA/CH=CB/CA
nên AE/HE=BD/AD
=>AE*AD=HE*BD
Gọi giao điểm của hai đường chéo là O giao điểm của hai cạnh bên là S,giao điểm của SO với AB,CD lần lượt là X,Y.
Ta có AX//YC nên theo định lý Ta lét ta có:
\(\frac{AX}{YC}\)=\(\frac{AO}{OC}\)=\(\frac{AB}{DC}\)=\(\frac{AX}{DY}\)
=>YC=DY
Vậy Y là trung điểm của DC.
Ta có AB//DC theo định lý Ta-lét ta có:
\(\frac{AX}{DY}\)=\(\frac{SX}{XY}\)=\(\frac{XB}{YC}\)
mà DY=YC(c/m trên)
=>AX=XB=>X là trung điểm của AB
Vậy giao điểm của SO với AB,CD tại trung điểm của các cạnh đó
=>đpcm
Ta cũng dễ dàng chứng mình được đường thẳng chứa 4 điểm đó là trùng trực của hai cạnh đấy sao khi chừng minh chúng thẳng hàng ở trên nhé!
Gọi giao điểm của hai đường chéo là O giao điểm của hai cạnh bên là S,giao điểm của SO với AB,CD lần lượt là X,Y.
Ta có AX//YC nên theo định lý Ta lét ta có:
AXYCAXYC=AOOCAOOC=ABDCABDC=AXDYAXDY
=>YC=DY
Vậy Y là trung điểm của DC.
Ta có AB//DC theo định lý Ta-lét ta có:
AXDYAXDY=SXXYSXXY=XBYCXBYC
mà DY=YC(c/m trên)
=>AX=XB=>X là trung điểm của AB
Vậy giao điểm của SO với AB,CD tại trung điểm của các cạnh đó
=>đpcm