K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
10 tháng 9 2023

- Có \(\frac{{OA'}}{{OA}} = \frac{{OB'}}{{OB}} = \frac{1}{2}\), góc O chung

=>  ΔOA'B' ∽ ΔOAB (c.g.c)

- Có \(\frac{{OC'}}{{OC}} = \frac{{OB'}}{{OB}} = \frac{1}{2}\), góc O chung

=> ΔOB'C' ∽ ΔOBC(c.g.c)

=> ΔABC ∽ ΔA'B'C' (c.g.c)

- Đường thẳng có đi qua O 

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

a)

i) Vì \(OA' = 3OA \Rightarrow \frac{{OA}}{{OA'}} = \frac{1}{3}\);\(OB' = 3OB \Rightarrow \frac{{OB}}{{OB'}} = \frac{1}{3}\).

Xét tam giác \(OA'B'\) có:

\(\frac{{OA}}{{OA'}} = \frac{{OB}}{{OB'}} = \frac{1}{3}\)

Do đó, \(A'B'//AB\) (định lí Thales đảo)

ii) Vì \(A'B'//AB \Rightarrow \frac{{OA}}{{OA'}} = \frac{{OB}}{{OB'}} = \frac{{AB}}{{A'B'}} = \frac{1}{3}\) (hệ quả của định lí Thales)

Do đó, \(\frac{{A'B'}}{{AB}} = \frac{3}{1} = 3\).

b)

i)

- Vì \(OA' = 3OA \Rightarrow \frac{{OA}}{{OA'}} = \frac{1}{3}\);\(OB' = 3OB \Rightarrow \frac{{OB}}{{OB'}} = \frac{1}{3}\).

Xét tam giác \(OA'B'\) có:

\(\frac{{OA}}{{OA'}} = \frac{{OB}}{{OB'}} = \frac{1}{3}\)

Do đó, \(A'B'//AB\) (định lí Thales đảo)

Vì \(A'B'//AB \Rightarrow \frac{{OA}}{{OA'}} = \frac{{OB}}{{OB'}} = \frac{{AB}}{{A'B'}} = \frac{1}{3}\) (hệ quả của định lí Thales)

Do đó, \(\frac{{A'B'}}{{AB}} = \frac{3}{1} = 3\).

- Vì \(OA' = 3OA \Rightarrow \frac{{OA}}{{OA'}} = \frac{1}{3}\);\(OC' = 3OC \Rightarrow \frac{{OC}}{{OC'}} = \frac{1}{3}\).

Xét tam giác \(OA'C'\) có:

\(\frac{{OA}}{{OA'}} = \frac{{OC}}{{OC'}} = \frac{1}{3}\)

Do đó, \(A'C'//AC\) (định lí Thales đảo)

Vì \(A'C'//AC \Rightarrow \frac{{OA}}{{OA'}} = \frac{{OC}}{{OC'}} = \frac{{AC}}{{A'C'}} = \frac{1}{3}\) (hệ quả của định lí Thales)

Do đó, \(\frac{{A'C'}}{{AC}} = \frac{3}{1} = 3\).

- Vì \(OB' = 3OB \Rightarrow \frac{{OB}}{{OB'}} = \frac{1}{3}\);\(OC' = 3OC \Rightarrow \frac{{OC}}{{OC'}} = \frac{1}{3}\).

Xét tam giác \(OB'C'\) có:

\(\frac{{OB}}{{OB'}} = \frac{{OC}}{{OC'}} = \frac{1}{3}\)

Do đó, \(B'C'//BC\) (định lí Thales đảo)

Vì \(B'C'//BC \Rightarrow \frac{{OB}}{{OB'}} = \frac{{OC}}{{OC'}} = \frac{{BC}}{{B'C'}} = \frac{1}{3}\) (hệ quả của định lí Thales)

Do đó, \(\frac{{B'C'}}{{BC}} = \frac{3}{1} = 3\).

Do đó, \(\frac{{B'C'}}{{BC}} = \frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}}\)

ii) Xét tam giác \(A'B'C'\) và tam giác \(ABC\) ta có:

\(\frac{{B'C'}}{{BC}} = \frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}}\) (chứng minh trên)

Do đó, tam giác \(A'B'C'\) đồng dạng với tam giác \(ABC\).

HQ
Hà Quang Minh
Giáo viên
28 tháng 1 2024

Từ điểm O, ‘‘phóng to’’ ba lần tam giác ABC, ta sẽ nhận được tam giác A’B’C’.

HQ
Hà Quang Minh
Giáo viên
13 tháng 1 2024

Cặp tam giác vuông ở hình d. Vì cạnh huyền và một cạnh góc vuông của tam giác này tỉ lệ với cạnh huyền và một cạnh góc vuông của tam giác vuông kia 

20 tháng 2 2019

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

- Vì \(OA' = 2OA \Rightarrow \frac{{OA}}{{OA'}} = \frac{1}{2}\);\(OB' = 2OB \Rightarrow \frac{{OB}}{{OB'}} = \frac{1}{2}\).

Xét tam giác \(OA'B'\) có:

\(\frac{{OA}}{{OA'}} = \frac{{OB}}{{OB'}} = \frac{1}{2}\)

Do đó, \(A'B'//AB\) (định lí Thales đảo)

Vì \(A'B'//AB \Rightarrow \frac{{OA}}{{OA'}} = \frac{{OB}}{{OB'}} = \frac{{AB}}{{A'B'}} = \frac{1}{2}\) (hệ quả của định lí Thales)

Do đó, \(\frac{{A'B'}}{{AB}} = \frac{2}{1} = 2\).

- Vì \(OA' = 3OA \Rightarrow \frac{{OA}}{{OA'}} = \frac{1}{3}\);\(OD' = 2OD \Rightarrow \frac{{OD}}{{OD'}} = \frac{1}{2}\).

Xét tam giác \(OA'D'\) có:

\(\frac{{OA}}{{OA'}} = \frac{{OD}}{{OD'}} = \frac{1}{2}\)

Do đó, \(A'D'//AD\) (định lí Thales đảo)

Vì \(A'D'//AD \Rightarrow \frac{{OA}}{{OA'}} = \frac{{OD}}{{OD'}} = \frac{{AD}}{{A'D'}} = \frac{1}{2}\) (hệ quả của định lí Thales)

Do đó, \(\frac{{A'D'}}{{AD}} = \frac{2}{1} = 2\).

- Vì \(OB' = 2OB \Rightarrow \frac{{OB}}{{OB'}} = \frac{1}{2}\);\(OC' = 2OC \Rightarrow \frac{{OC}}{{OC'}} = \frac{1}{2}\).

Xét tam giác \(OB'C'\) có:

\(\frac{{OB}}{{OB'}} = \frac{{OC}}{{OC'}} = \frac{1}{2}\)

Do đó, \(B'C'//BC\) (định lí Thales đảo)

Vì \(B'C'//BC \Rightarrow \frac{{OB}}{{OB'}} = \frac{{OC}}{{OC'}} = \frac{{BC}}{{B'C'}} = \frac{1}{2}\) (hệ quả của định lí Thales)

Do đó, \(\frac{{B'C'}}{{BC}} = \frac{2}{1} = 2\).

- Vì \(OD' = 2OD \Rightarrow \frac{{OD}}{{OD'}} = \frac{1}{2}\);\(OC' = 2OC \Rightarrow \frac{{OC}}{{OC'}} = \frac{1}{2}\).

Xét tam giác \(OD'C'\) có:

\(\frac{{OD}}{{OD'}} = \frac{{OC}}{{OC'}} = \frac{1}{2}\)

Do đó, \(D'C'//DC\) (định lí Thales đảo)

Vì \(D'C'//DC \Rightarrow \frac{{OD}}{{OD'}} = \frac{{OC}}{{OC'}} = \frac{{DC}}{{D'C'}} = \frac{1}{2}\) (hệ quả của định lí Thales)

Do đó, \(\frac{{D'C'}}{{DC}} = \frac{2}{1} = 2\).

Do đó, \(\frac{{B'C'}}{{BC}} = \frac{{A'B'}}{{AB}} = \frac{{C'D'}}{{CD}} = \frac{{A'D'}}{{AD}}\).