\(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2016

Sao tự nhiên thấy đắng lòng quá, e cx đang định hỏi bài nỳ. Nghĩ hoài hổng ra. haizz... khocroi

26 tháng 9 2016

Sa mạc lời, quả thực rất đắng lòng. Haizz...gianroi

19 tháng 2 2017

ĐKXĐ:\(x\ge0;y\ge1;z\ge2\)

\(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{x+y+z}{2}\)

\(\Leftrightarrow2\sqrt{x}+2\sqrt{y-1}+2\sqrt{z-2}=x+y+z\)

\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-1+2\sqrt{y-1}+1\right)+\left(z-2+2\sqrt{z-2}+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-2\right)^2=0\)

\(\left\{\begin{matrix}\left(\sqrt{x-1}-1\right)^2\ge0\\\left(\sqrt{y-1}-1\right)^2\ge0\\\left(\sqrt{z-2}-2\right)^2\ge0\end{matrix}\right.\)\(\forall x;y;z\)

\(\Rightarrow\left\{\begin{matrix}\left(\sqrt{x-1}-1\right)^2=0\\\left(\sqrt{y-1}-1\right)^2=0\\\left(\sqrt{z-2}-2\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{y-1}-1=0\\\sqrt{z-2}-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}\sqrt{x-1}=1\\\sqrt{y-1}=1\\\sqrt{z-2}=2\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}x-1=1\\y-1=1\\z-2=4\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}x=2\\y=2\\z=6\end{matrix}\right.\)

=> x02 + y02 + z02 = 22 + 22 + 62 = 44

2 tháng 11 2017

a) ta có :(2^14:1024).2^x=128

=>(2^14:2^10).2^x=2^7

=>2^4.2^x=2^7

=>2^x=2^7:2^4

=>2^x=2^3

=>x=3

b) ta có: 3^x+3^x+1+3^x+2=117

=>3^x.(1+3+3^2)=117

=>3^x.13=117

=>3^x=9=3^2

=>x=2

c)ta có 2^x+2^x+1+2^x+2+2^x+3=480

=>2^x.(1+2+2^2+2^3)=480

=>2^x.15=480

=>2^x=480:15=32=2^5

=>x=5

d) ta có: 2^3.32>=2^n>16

=>2^3.2^5>=2^>2^4

=>2^8>=2^n>2^4

=>n=8;7;6;5

còn lại tương tự

h)16^n<32^4

=>(2^4)^n<(2^5)^4

=>2^4n<2^20

=>4n<20

=>n= 0;1;2;3;4

Chọn đáp án đúng: Câu 1: Miền nghiệm của bất phương trình -3x+y+2≤0 không chứa điểm nào sau đây? A. D(3;1) B. A(1;2) C. C\(\left(1;\frac{1}{2}\right)\) D. B(2;1) Câu 2: Bdt (m+n)2≥4mn tương đương với bất đẳng thức nào sau đây? A. n(m-1)2-m(n-1)2≥0 B. (m-n)2 ≥2mn C. (m+n)2 +m-n≥0 D. m2+n2≥2mn Câu 3: Cho x,y là 2 số thực thay đổi sao cho x+y=2. Gọi m=x2+y2. Khi đó ta có: A. giá trị nhỏ nhất của m là 4 B....
Đọc tiếp

Chọn đáp án đúng:

Câu 1: Miền nghiệm của bất phương trình -3x+y+2≤0 không chứa điểm nào sau đây?

A. D(3;1)

B. A(1;2)

C. C\(\left(1;\frac{1}{2}\right)\)

D. B(2;1)

Câu 2: Bdt (m+n)2≥4mn tương đương với bất đẳng thức nào sau đây?

A. n(m-1)2-m(n-1)2≥0

B. (m-n)2 ≥2mn

C. (m+n)2 +m-n≥0

D. m2+n2≥2mn

Câu 3: Cho x,y là 2 số thực thay đổi sao cho x+y=2. Gọi m=x2+y2. Khi đó ta có:

A. giá trị nhỏ nhất của m là 4

B. giá trị lớn nhất của m là 4

C. giá trị lớn nhất của m là 2

D. giá trị nhỏ nhất của m là 2

Câu 4: Bpt 5x-1>\(\frac{2x}{5}+3\) có nghiệm là:

A. ∀x

B. x>\(\frac{20}{23}\)

C. x<2

D. x>-\(\frac{5}{2}\)

Câu 5: Cho nhị thức bậc nhất f(x)=23x-20. Khẳng định nào sau đây đúng?

A. f(x)>0, ∀x∈\(\left(-\infty;\frac{20}{23}\right)\)

B. f(x)>0, ∀x∈⛇

C. f(x)>0, ∀x∈\(\left(\frac{20}{23};+\infty\right)\)

D. f(x)>0, ∀x>-\(\frac{5}{2}\)

Câu 6: Điểm nào sau đây thuộc miền nghiệm của hệ bpt \(\left\{{}\begin{matrix}2x-5-1>0\\2x+y+5>0\\x+y+1< 0\end{matrix}\right.\) A. (0;-2) B. (0,0) C. (0;2) D.(1;0) Câu 7: Miền nghiệm của bất phương trình 3x+2(y+3)>4(x+1)-y+3 là phần mặt phẳng chứa điểm nào? A. (3;1) B. (0;0) C. (3;0) D. (1;1) Câu 8: Cho hệ bpt \(\left\{{}\begin{matrix}x>0\\x+\sqrt{3y}+1\le0\end{matrix}\right.\) có tập nghiệm là S. Khẳng định nào sau đây là khẳng định đúng? A. (-4;\(\sqrt{3}\))∈S B. (1;-1) ∈S C. (-1;\(\sqrt{5}\))∈S D. (1;-\(\sqrt{3}\))∈S Câu 9: Suy luận nào sau đây đúng? A. \(\left\{{}\begin{matrix}a>b\\c>d\end{matrix}\right.\Rightarrow\frac{a}{b}>\frac{b}{d}\) B. \(\left\{{}\begin{matrix}a>b\\c>d\end{matrix}\right.\Rightarrow a-c>b-d\) C. \(\left\{{}\begin{matrix}a>b>0\\c>d>0\end{matrix}\right.\Rightarrow ac>bd\) D. \(\left\{{}\begin{matrix}a>b\\c>d\end{matrix}\right.\Rightarrow ac>bd\) Câu 10: Cho hệ bất phương trình \(\left\{{}\begin{matrix}x>0\\x+\sqrt{3y}+1>0\end{matrix}\right.\)có tập nghiệm là S. Khẳng định nào sau đây đúng? A. \(\left(\sqrt{2};0\right)\notin S\) B. (-1;2) ∉ S C. \(\left(\sqrt{3};0\right)\)∈S D. \(\left(1;-\sqrt{3}\right)\in S\)

1
NV
5 tháng 5 2020

Câu 1: đáp án B, thay tọa độ A vào pt được \(1\le0\) (sai)

Câu 2: đáp án D

\(\left(m+n\right)^2\ge4mn\Leftrightarrow m^2+n^2+2mn\ge4mn\Leftrightarrow m^2+n^2\ge2mn\)

Câu 3: đáp án D

\(m=x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=\frac{4}{2}=2\)

Câu 4:

\(\Leftrightarrow5x-\frac{2}{5}x>4\Leftrightarrow\frac{23}{5}x>4\Leftrightarrow x>\frac{20}{23}\)

Câu 5:

\(f\left(x\right)>0\Leftrightarrow23x-20>0\Leftrightarrow x>\frac{20}{23}\) đáp án C

Câu 6:

Bạn viết sai đề, nhìn BPT đầu tiên \(2x-5-1>0\) là thấy có vấn đề

Câu 7:

\(3x+2\left(y+3\right)>4\left(x+1\right)-y+3\)

\(\Leftrightarrow x-3y+1< 0\)

Thay tọa độ D vào ta được \(-1< 0\) đúng nên đáp án D đúng

Câu 8:

Thay tọa độ vào chỉ đáp án D thỏa mãn

Câu 9:

Đáp án C đúng

Câu 10:

Đáp án B đúng (do tọa độ x âm ko thỏa mãn BPT đầu tiên)

NV
11 tháng 11 2019

a/ \(x^2-2x-3=-m\)

Đặt \(f\left(x\right)=x^2-2x-3\)

\(-\frac{b}{2a}=1\) ; \(f\left(1\right)=-4\) ; \(f\left(-1\right)=0\) ; \(f\left(3\right)=0\)

\(\Rightarrow\) Để pt có nghiệm trên khoảng đã cho thì \(-4\le-m\le0\Rightarrow0\le m\le4\)

b/ \(-x^2+2mx-m+1=0\)

\(\Delta'=m^2+m-1\ge0\Rightarrow\left[{}\begin{matrix}m\le\frac{-1-\sqrt{5}}{2}\\m\ge\frac{-1+\sqrt{5}}{2}\end{matrix}\right.\)

Để pt có 2 nghiệm đều âm

\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2m< 0\\x_1x_2=m-1>0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn

Vậy pt luôn có ít nhất 1 nghiệm \(x\ge0\) với \(\left[{}\begin{matrix}m\le\frac{-1-\sqrt{5}}{2}\\m\ge\frac{-1+\sqrt{5}}{2}\end{matrix}\right.\)

NV
11 tháng 11 2019

c/ \(f\left(x\right)=2x^2-x-1=m\)

Xét hàm \(f\left(x\right)=2x^2-x-1\) trên \(\left[-2;1\right]\)

\(-\frac{b}{2a}=\frac{1}{4}\) ; \(f\left(\frac{1}{4}\right)=-\frac{9}{8}\) ; \(f\left(-2\right)=9\); \(f\left(1\right)=0\)

\(\Rightarrow\) Để pt có 2 nghiệm pb thuộc đoạn đã cho thì \(-\frac{9}{8}< m\le0\)

d/ \(f\left(x\right)=x^2-2x+1=m\)

Xét \(f\left(x\right)\) trên \((0;2]\)

\(-\frac{b}{2a}=1\) ; \(f\left(1\right)=0\) ; \(f\left(0\right)=1\); \(f\left(2\right)=1\)

Để pt có nghiệm duy nhất trên khoảng đã cho \(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\)

e/ ĐKXĐ: \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge-3\\x\le-4\end{matrix}\right.\\x\ge m\end{matrix}\right.\)

\(x^2+4x+3=x-m\)

\(\Leftrightarrow f\left(x\right)=x^2+3x+3=-m\)

Xét hàm \(f\left(x\right)\)

\(-\frac{b}{2a}=-\frac{3}{2}\) ; \(f\left(-\frac{3}{2}\right)=\frac{3}{4}\); \(f\left(-3\right)=3\); \(f\left(-4\right)=7\)

Để pt có 2 nghiệm thỏa mãn \(x\notin\left(-4;-3\right)\) thì \(\left[{}\begin{matrix}\frac{3}{4}< m\le3\\m\ge7\end{matrix}\right.\) (1)

Mặt khác \(x^2+3x+m+3=0\)

Để pt có 2 nghiệm thỏa mãn \(m\le x_1< x_2\) thì:

\(\left\{{}\begin{matrix}f\left(m\right)\ge0\\x_1+x_2>2m\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m^2+4m+3\ge0\\2m< -3\end{matrix}\right.\) \(\Rightarrow m\le-3\) (2)

Từ (1) và (2) suy ra ko tồn tại m thỏa mãn

1. bất phương trình \(\frac{3x+5}{2}-1\le\frac{x+2}{3}+x\) có bao nhiêu nghiệm nguyên lớn hơn -10 A.4 B.5 C.9 D.10 2. tổng các nghiệm của bất phương trình x(2-x) ≥ x(7-x) - 6(x-1) trên đoạn \([-10;10]\) A. 5 B.6 C.21 D.40 3. tập nghiệm S của bất phương trình 5( x+1) - x( 7-x) > -2x A. R B. \(\left(-\frac{5}{2};+\infty\right)\) C.\(\left(-\infty;\frac{5}{2}\right)\) D. ϕ 4. Tập...
Đọc tiếp

1. bất phương trình \(\frac{3x+5}{2}-1\le\frac{x+2}{3}+x\) có bao nhiêu nghiệm nguyên lớn hơn -10

A.4 B.5 C.9 D.10

2. tổng các nghiệm của bất phương trình x(2-x) ≥ x(7-x) - 6(x-1) trên đoạn \([-10;10]\)

A. 5 B.6 C.21 D.40

3. tập nghiệm S của bất phương trình 5( x+1) - x( 7-x) > -2x

A. R B. \(\left(-\frac{5}{2};+\infty\right)\) C.\(\left(-\infty;\frac{5}{2}\right)\) D. ϕ

4. Tập nghiệm S của bất phương trình x+\(\sqrt{x}< \left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)\)

A. (-∞;3) B. (3; +∞) C. [3; +∞) D. (-∞; 3]

5. tổng các nghiệm nguyên của bất phương trình \(\frac{x-2}{\sqrt{x-4}}\le\frac{4}{\sqrt{x-4}}\) bằng

A. 15 B. 26 C. 11 D. 0

6. bất phương trình (m2- 3m )x + m < 2- 2x vô nghiệm khi

A. m ≠1 B. m≠2 C. m=1 , m=2 D. m∈ R

7. có bao nhiêu giá trị thực của tham số m để bất phương trình ( m2 -m )x < m vô nghiệm

A. 0 B.1 C.2 D. vô số

8. gọi S là tập hợp tất cả các giá trị thực của tham số m để bất phương trình (m2 -m)x + m< 6x -2 vô nghiệm. tổng các phần tử trong S là

A. 0 B.1 C.2 D.3

9. tìm tất cả các giá trị thực của tham số m để bất phương trình m2( x-2) -mx +x+5 < 0 nghiệm đúng với mọi x∈ [-2018; 2]

A. m< \(\frac{7}{2}\) B. m=​ \(\frac{7}{2}\) C. m > \(\frac{7}{2}\) D. m ∈ R

10. tìm tất cả các giá trị thực của tham số m để bất phương trình m2 (x-2) +m+x ≥ 0 có nghiệm x ∈ [-1;2]

A. m≥ -2 B. m= -2 C. m ≥ -1 D. m ≤ -2

0
9 tháng 1 2018

Bài này cũng dễ mà:

Áp dụng BĐT Cô-si, ta có:

\(y+z+1\ge3\sqrt[3]{yz}\)

\(\Rightarrow\)\(\dfrac{y+z+1}{3}\ge\sqrt[3]{yz}\)

\(\Rightarrow\)\(\dfrac{x}{\sqrt[3]{yz}}\ge\dfrac{3x}{y+z+1}\)

\(\Rightarrow\)\(\sum\dfrac{x}{\sqrt[3]{yz}}\ge\sum\dfrac{3x}{y+z+1}\)

\(\sum\dfrac{3x}{y+z+1}=\sum\dfrac{3x^2}{xy+xz+x}\)

Áp dụng BĐT Cauchy -Schwaz:

\(\sum\dfrac{3x^2}{xy+xz+x}\ge\dfrac{3\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\)

Mà:

\(xy+yz+xz\le x^2+y^2+z^2\)(BĐT phụ)

\(\Rightarrow\)\(2\left(xy+yz+xz\right)\le2\left(x^2+y^2+z^2\right)=6\)

Áp dụng BĐT Bunhicopski:

\(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)=9\)

\(\Rightarrow x+y+z\le3\)

\(\Rightarrow2\left(xy+yz+xz\right)+x+y+z\le6+3=9\)

\(\Rightarrow\)\(\dfrac{3\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\ge\dfrac{3\left(x+y+z\right)^2}{9}\ge\dfrac{\left(x+y+z\right)^2}{3}\ge xy+yz+xz\left(ĐPCM\right)\)

Dấu "=" xảy ra \(\Leftrightarrow\)x=y=z=1

9 tháng 1 2018

@Lightning Farron vào thể hiện đẳng cấp đi anh zai :))

30 tháng 7 2016

dùng công thức tính đường thẳng đi là ra