K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2018

a) Phương trình tham số của d là:

Giải bài 1 trang 80 SGK hình học 10 | Giải toán lớp 10

b) d nhận Giải bài 1 trang 80 SGK hình học 10 | Giải toán lớp 10 là 1 vec tơ pháp tuyến

⇒ d nhận Giải bài 1 trang 80 SGK hình học 10 | Giải toán lớp 10 là 1 vec tơ chỉ phương

Phương trình tham số của đường thẳng d là:

Giải bài 1 trang 80 SGK hình học 10 | Giải toán lớp 10

AH
Akai Haruma
Giáo viên
28 tháng 2 2023

Lời giải:

a

VTPT: $(-2,5)$

PTĐT $(\Delta)$ là; $-2(x-1)+5(y-3)=0$

$\Leftrightarrow -2x+5y-13=0$

b. PTĐT $(\Delta)$ là:

$1(x-2)+4(y-1)=0\Leftrightarrow x+4y-6=0$

c.

VTCP của $(\Delta)$ là: $\overrightarrow{AB}=(2,5)$

$\Rightarrow$ VTPT của $(\Delta)$ là: $(-5,2)$

PTĐT $(\Delta)$ là: $-5(x-1)+2(y+2)=0$

$\Leftrightarrow -5x+2y+9=0$

d.

Làm tương tự câu c, PT $3x+2y-6=0$

28 tháng 2 2023

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Đường thẳng \(d\) đi qua điểm \(A( - 1;5)\) và có vectơ chỉ phương \(\overrightarrow u  = \left( {2;1} \right)\), nên có phương trình tham số là:

 \(\left\{ \begin{array}{l}x =  - 1 + 2t\\y = 5 + t\end{array} \right.\)

Đường thẳng \(d\) có vectơ chỉ phương \(\overrightarrow u  = \left( {2;1} \right)\),nên có vectơ pháp tuyền là \(\overrightarrow n  = \left( {1; - 2} \right)\) và đi qua \(A( - 1;5)\)

Ta có phương trình tổng quát là

 \((x + 1) - 2(y - 5) = 0 \Leftrightarrow x - 2y + 11 = 0\)

b) Đường thẳng \(d\) có vectơ pháp tuyến \(\overrightarrow n  = \left( {3; - 2} \right)\) nên có vectơ chỉ phương \(\overrightarrow u  = \left( {2;3} \right)\), và đi qua điểm \(B(4; - 2)\) nên ta có phương trình tham số của \(d\) là :

\(\left\{ \begin{array}{l}x = 4 + 2t\\y =  - 2 + 3t\end{array} \right.\)

Đường thẳng \(d\) đi qua điểm \(B(4; - 2)\) và có vectơ pháp tuyến \(\overrightarrow n  = \left( {3; - 2} \right)\)

Phương trình tổng quát của đường thẳng d là:

\(3(x - 4) - 2(y + 2) = 0 \Leftrightarrow 3x - 2y - 16 = 0\)

c) Đường thẳng \(d\) có dạng \(y = ax + b\)

d đi qua \(P(1;1)\) và có hệ số góc \(k =  - 2\) nên ta có:

\(1 =  - 2.1 + b \Rightarrow b = 3\)

Suy ra đồ thị đường thẳng d có dạng \(y =  - 2x + 3\)

Vậy đường thẳng d có phương trình tổng quát là \(y + 2x - 3 = 0\)

Suy ra đường thẳng d  có vectơ pháp tuyến \(\overrightarrow n  = \left( {2;1} \right)\), nên có vectơ chỉ phương là \(\overrightarrow u  = \left( {1; - 2} \right)\) và đi qua điểm \(P(1;1)\) nên ta có phương trình tham số của d là :

\(\left\{ \begin{array}{l}x = 1 + t\\y = 1 - 2t\end{array} \right.\)

 d) Đường thẳng \(d\) đi qua hai điểm \(Q(3;0)\)và \(R(0;2)\) nên có vectơ chỉ phương \(\overrightarrow u  = \overrightarrow {QR}  = ( - 3;2)\) và có vectơ pháp tuyến \(\overrightarrow n  = (2;3)\)

Phương trình tham số của \(\Delta \) là: \(\left\{ \begin{array}{l}x = 3 - 3t\\y = 2t\end{array} \right.\)

Phương trình tổng quát của \(\Delta \) là: \(2(x - 3) + 3(x - 0) =  \Leftrightarrow 2x + 3y - 6 = 0\)

a: Phương trìh tham số là:

\(\left\{{}\begin{matrix}x=3+4t\\y=5+t\end{matrix}\right.\)

vtcp là (4;1)

=>VTPT là (-1;4)

Phương trình tổng quát là:

-1(x-3)+4(y-5)=0

=>-x+3+4y-20=0

=>-x+4y-17=0

b: vtpt là (7;3)

=>VTCP là (-3;7)

Phương trình tham số là \(\left\{{}\begin{matrix}x=-2-3t\\y=4+7t\end{matrix}\right.\)

Phương trình tổng quát là:

7(x+2)+3(y-4)=0

=>7x+14+3y-12=0

=>7x+3y+2=0

c: vecto AB=(4;-4)

=>VTPT là (4;4)

Phương trình tham số là 

x=1+4t và y=3-4t

Phương trình tổng quát là:

4(x-1)+4(y-3)=0

=>x-1+y-3=0

=>x+y-4=0

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Phương trình tổng quát của đường thẳng d đi qua điểm \(A\left( { - 3;2} \right)\) và có một vectơ pháp tuyến là \(\overrightarrow n  = \left( {2; - 3} \right)\) là: \(2\left( {x + 3} \right) - 3\left( {y - 2} \right) = 0 \Leftrightarrow 2x - 3y+12 = 0\)

Do vecto pháp tuyến là \(\overrightarrow n  = (2; - \;3) \Rightarrow \overrightarrow u  = (3;2)\)

Từ đó ta có phương trình tham số của đường thẳng d là:

 \(\left\{ \begin{array}{l}x =  - \;3 + 3t\\y = 2 + 2t\end{array} \right.\)\((t \in \mathbb{R})\)

b) Phương trình tham số của  đường thẳng d đi qua điểm \(B\left( { - 2; - 5} \right)\) và có một vectơ chỉ phương là \(\overrightarrow u  = \left( { - 7;6} \right)\) là: \(\left\{ \begin{array}{l}x =  - 2 - 7t\\y =  - 5 + 6t\end{array} \right.\left( {t \in \mathbb{R}} \right)\).

Từ đó ta có phương trình tổng quát của đường thẳng d là: \(\frac{{x + 2}}{{ - 7}} = \frac{{y + 5}}{6} \Leftrightarrow 6x + 7y + 47 = 0\).

c) Phương trình tổng quát của đường thẳng đi qua hai điểm \(C\left( {4;3} \right),D\left( {5;2} \right)\) là: \(\frac{{x - 4}}{{5 - 4}} = \frac{{y - 3}}{{2 - 3}} \Leftrightarrow x + y - 7 = 0\)

Từ đó ta có phương trình tham số của đường thẳng d là: \(\left\{ \begin{array}{l}x = 7 - t\\y = t\end{array} \right.{\rm{ }}\left( {t \in \mathbb{R}} \right)\) .

NV
11 tháng 4 2020

Phương trình tham số d:

\(\left\{{}\begin{matrix}x=1+2t\\y=-4+3t\end{matrix}\right.\)

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Phương trình đường tròn là: \({\left( {x + 3} \right)^2} + {\left( {y - 4} \right)^2} = 81\)

b) Bán kính đường tròn là: \(R = IM = \sqrt {{{\left( {4 - 5} \right)}^2} + {{\left( { - 1 + 2} \right)}^2}}  = \sqrt 2 \)

Phương trình đường tròn là: \({\left( {x - 5} \right)^2} + {\left( {y + 2} \right)^2} = 2\)

c) Bán kính đường tròn là: \(R = \frac{{\left| {5.1 - 12.\left( { - 1} \right) - 1} \right|}}{{\sqrt {{5^2} + {{\left( { - 12} \right)}^2}} }} = \frac{{16}}{{13}}\)

Phương trình đường tròn là: \({\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} = {\left( {\frac{{16}}{{13}}} \right)^2}\)

d) Gọi \(I\left( {a;b} \right)\) là trung điểm AB. Vậy tọa độ điểm I là: \(I\left( {1;1} \right)\)

Bán kính đường tròn là: \(R = IA = \sqrt {{{\left( {3 - 1} \right)}^2} + {{\left( { - 4 - 1} \right)}^2}}  = \sqrt {29} \)

Phương trình đường tròn là: \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = 29\)

e) Giả sử  tâm đường tròn là điểm \(I\left( {a;b} \right)\). Ta có: \(IA = IB = IC \Leftrightarrow I{A^2} = I{B^2} = I{C^2}\)

Vì \(I{A^2} = I{B^2},I{B^2} = I{C^2}\) nên: \(\left\{ \begin{array}{l}{\left( {1 - a} \right)^2} + {\left( {1 - b} \right)^2} = {\left( {3 - a} \right)^2} + {\left( {1 - b} \right)^2}\\{\left( {3 - a} \right)^2} + {\left( {1 - b} \right)^2} = {\left( {0 - a} \right)^2} + {\left( {4 - b} \right)^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = 3\end{array} \right.\)  b

Vậy \(I\left( {2;3} \right)\) và \(R = IA = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2}}  = \sqrt 5 \)

Vậy phương trình đường tròn đi qua 3 điểm A,B, C là: \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} = 5\)

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Đường thẳng \(\Delta \) có vectơ pháp tuyến \(\overrightarrow n  = \left( {3;5} \right)\) nên có vectơ chỉ phương \(\overrightarrow u  = \left( {5; - 3} \right)\), nên ta có phương trình tham số của \(\Delta \) là :

 \(\left\{ \begin{array}{l}x = 1 + 5t\\y = 1 - 3t\end{array} \right.\)

Đường thẳng \(\Delta \) đi qua điểm \(A(1;1)\) và có vectơ pháp tuyến \(\overrightarrow n  = \left( {3;5} \right)\)

Phương trình tổng quát của đường thẳng d là:

\(3(x - 1) + 5(y - 1) = 0 \Leftrightarrow 3x + 5y - 8 = 0\)

b) Đường thẳng \(\Delta \) đi qua gốc tọa độ \(O(0;0)\)và có vectơ chỉ phương \(\overrightarrow u  = \left( {2; - 7} \right)\), nên có phương trình tham số là:

\(\left\{ \begin{array}{l}x = 2t\\y =  - 7t\end{array} \right.\)

Đường thẳng \(\Delta \) có vectơ chỉ phương \(\overrightarrow u  = \left( {2; - 7} \right)\),nên có vectơ pháp tuyền là \(\overrightarrow n  = \left( {7;2} \right)\) và đi qua \(O(0;0)\)

Ta có phương trình tổng quát là

\(7(x - 0) + 2(y - 0) = 0 \Leftrightarrow 7x + 2y = 0\)

c) Đường thẳng \(\Delta \) đi qua hai điểm \(M(4;0),N(0;3)\) nên có vectơ chỉ phương \(\overrightarrow u  = \overrightarrow {MN}  = ( - 4;3)\) và có vectơ pháp tuyến \(\overrightarrow n  = (3;4)\)

Phương trình tham số của \(\Delta \) là: \(\left\{ \begin{array}{l}x = 4 - 4t\\y = 3t\end{array} \right.\)

Phương trình tổng quát của \(\Delta \) là: \(3(x - 4) + 4(x - 0) = 0 \Leftrightarrow 3x + 4y - 12 = 0\)