Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số sách chồng t1, t2 lần lượt là a; b (a, b >0)
Ta có hệ pt sau :
\(\hept{\begin{cases}a+b=90\\a+10=2\left(b-10\right)\end{cases}}\)
a + 10 = 2(b-10)
\(\Rightarrow a=2b-30\)
a + b = 90
\(\Leftrightarrow2b-30+b=90\Leftrightarrow3b=120\Leftrightarrow b=40\Leftrightarrow a=50\)
Vậy lúc đầu chồng t` có 50 quyển, chồng t2 có 40 quyển
\(2x^2-4x-m=0\left(1\right)\)
a, Để pt (1) có hai nghiệm phân biệt thì Δ' > 0
\(\Rightarrow2+2m>0\Leftrightarrow m>-1\)
b, Theo viét : \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-\dfrac{m}{2}\end{matrix}\right.\)
Vì \(t_1,t_2\) là hai nghiệm của Phương trình \(x^2-Sx+P=0\) nên theo viét đảo có :
\(\left\{{}\begin{matrix}S=t_1+t_2=\dfrac{1}{x_1}+\dfrac{1}{x_2}\\P=t_1.t_2=\dfrac{1}{x_1x_2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}S=\dfrac{x_1+x_2}{x_1x_2}\\P=\dfrac{1}{x_1x_2}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}S=\dfrac{2}{-\dfrac{m}{2}}\\P=\dfrac{1}{-\dfrac{m}{2}}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}S=-\dfrac{4}{m}\\P=-\dfrac{2}{m}\end{matrix}\right.\)
\(\Rightarrow\) Phương trình cần tìm là : \(x^2+\dfrac{4}{m}.x-\dfrac{2}{m}=0\) hay \(x^2m+4x-2=0\)
Phương trình x 2 +px -5=0 có hai nghiệm x 1 và x 2 nên theo hệ thức vi-ét ta có:
x 1 + x 2 = -p/1 = -p ; x 1 x 2 =-5/1 =-5 (1)
Hai số – x 1 và – x 2 là nghiệm của phương trình:
[x – (- x 1 )] [x – (- x 2 )] =0
⇔ x 2 – (- x 1 x) – (- x 2 x) + (- x 1 )(- x 2 ) =0
⇔ x 2 + x 1 x + x 2 x + x 1 x 2 =0
⇔ x 2 + ( x 1 + x 2 )x + x 1 x 2 =0 (2)
Từ (1) và (2) ta có phuơng trình cần tìm là x 2 – px -5 =0