Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Cô xóa giúp em câu kia với ạ! Tọa độ đỉnh\(B\left(\frac{32}{17};\frac{49}{17}\right)\)và C\(\left(-\frac{8}{17};\frac{6}{17}\right)\)
Gọi đường phân giác AD: x+y-3=0, đường trung tuyến BM: x-y+1=0 và đường cao CH: 2x+y+1=0
Mà A \(\in\)AD => \(A\left(a;3-a\right);B\in BM\Rightarrow B\left(b;b+1\right);C\in CH\Rightarrow C\left(c;-2c-1\right)\)
Có M là trung điểm AC nên M\(\left(\frac{a+c}{2};\frac{2-a-2c}{2}\right)\)
Mà M\(\in\)BM nên thay vào phương trình BM ta có: \(\frac{a+c}{2}-\frac{2-a-2c}{2}+1=0\Leftrightarrow2a+3c=0\left(1\right)\)
Ta có: \(\overrightarrow{AB}=\left(b-a;a+b-2\right)\)do \(AB\perp\)CH => \(\overrightarrow{AB}\cdot\overrightarrow{u_{CH}}=0\Leftrightarrow3a+b=4\left(2\right)\)
Trong đó \(\overrightarrow{u_{CH}}\)=(1;-2) là một vecto chỉ phương của đường cao CH
Gọi I là giao của BM và AD. Nhận thấy AD _|_BM tại I nên I là trung điểm của BM
Do đó \(I\left(\frac{a+2b+c}{4};\frac{-a+2b-2c+4}{4}\right)\)mà I\(\in\)AD => 4b-c=8(3)
Từ (1)(2)(3) ta có \(a=\frac{12}{17};b=\frac{32}{17};c=\frac{-8}{17}\)
Kết luận \(A\left(\frac{12}{17};\frac{39}{17}\right),B\left(\frac{32}{17};\frac{49}{17}\right),C\left(\frac{-8}{17};\frac{6}{17}\right)\)
Lần sau em đăng vào học 24 nhé!
Hướng dẫn:
Gọi BM là đường trung tuyến kẻ từ B; AD là phân giác kẻ từ A; CH là đường cao kẻ từ C
A ( a; 3 - a); C ( c: -2c -1 )
Có M là trung điểm AC => M ( a+c/2 ; 2-a-2c/2)
=> Gọi I là giao điểm của AD và BM => chứng minh I là trung điểm BM
=> tìm đc tọa độ B theo a và c
Mà B thuộc MB => thay vào có 1 phương trình theo ẩn a và c
Lại có: AB vuông CH => Thêm 1 phương trình theo a và c
=> Tìm đc a, c => 3 đỉnh
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2:
Đường tròn \(\left(C_1\right)\) tâm \(\left(1;2\right)\) bán kính \(R=2\)
a/ Không hiểu đề bài, bạn ghi rõ thêm ra được chứ?
Tiếp tuyến đi qua giao điểm của \(\Delta_1;\Delta_2\) hay tiếp tuyến tại các giao điểm của \(\Delta_1\) và \(\Delta_2\) với đường tròn?
b/ Lại không hiểu đề nữa, điểm I trong tam giác \(IAB\) đó là điểm nào vậy bạn?
Bài 1b/
\(\Delta'\) nhận \(\left(2;1\right)\) là 1 vtpt
Gọi vtpt của d' có dạng \(\left(a;b\right)\Rightarrow\frac{\left|2a+b\right|}{\sqrt{2^2+1^2}.\sqrt{a^2+b^2}}=\frac{1}{\sqrt{2}}\)
\(\Leftrightarrow\sqrt{2}\left|2a+b\right|=\sqrt{5\left(a^2+b^2\right)}\Leftrightarrow2\left(2a+b\right)^2=5\left(a^2+b^2\right)\)
\(\Leftrightarrow3a^2+8ab-3b^2=0\Rightarrow\left[{}\begin{matrix}a=-3b\\3a=b\end{matrix}\right.\)
\(\Rightarrow\) d' có 2 vtpt thỏa mãn là \(\left(3;-1\right)\) và \(\left(1;3\right)\)
TH1: d' có pt dạng \(3x-y+c=0\)
\(d\left(I;d'\right)=R\Leftrightarrow\frac{\left|3.1-3+c\right|}{\sqrt{3^2+1^2}}=2\Rightarrow c=\pm2\sqrt{10}\)
\(\Rightarrow\left[{}\begin{matrix}3x-y+2\sqrt{10}=0\\3x-y-2\sqrt{10}=0\end{matrix}\right.\)
TH2: d' có dạng \(x+3y+c=0\)
\(d\left(I;d'\right)=R\Leftrightarrow\frac{\left|1+3.3+c\right|}{\sqrt{10}}=2\Leftrightarrow\left|c+10\right|=2\sqrt{10}\Rightarrow c=-10\pm2\sqrt{10}\)
\(\Rightarrow\left[{}\begin{matrix}x+3y-10+2\sqrt{10}=0\\x+3y-10-2\sqrt{10}=0\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng công thức cos =
ta có cos =
=> cos =
=
=
=>
= 450
Giao điểm của \(d_1;d_2\) là nghiệm: \(\left\{{}\begin{matrix}5x+4y-1=0\\8x+y-7=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
\(\Rightarrow\) Đây là đỉnh A hoặc B (do tọa độ khác tọa độ C)
Không mất tính tổng quát, giả sử \(A\left(1;-1\right)\)
\(\Rightarrow\) Đường cao AH ứng với BC có pt là 5x+4y-1=0
Do AH vuông góc BC nên BC nhận (4;-5) là 1 vtpt
Phương trình BC:
\(4\left(x-3\right)-5\left(y-5\right)=0\Leftrightarrow4x-5y+13=0\)
\(\overrightarrow{AC}=\left(2;6\right)=2\left(1;3\right)\Rightarrow\) AC nhận (3;-1) là 1 vtpt
Phương trình AC:
\(3\left(x-1\right)-1\left(y+1\right)=0\Leftrightarrow3x-y-4=0\)
B thuộc BC nên tọa độ có dạng: \(\left(b;\dfrac{4b+13}{5}\right)\)
Gọi M là trung điểm BC \(\Rightarrow M\left(\dfrac{b+3}{2};\dfrac{2b+19}{5}\right)\)
M thuôc trung tuyến \(d_2\) qua A nên:
\(8\left(\dfrac{b+3}{2}\right)+\left(\dfrac{2b+19}{5}\right)-7=0\) \(\Rightarrow b=-2\)
\(\Rightarrow B\left(-2;1\right)\) \(\Rightarrow\overrightarrow{AB}=\left(-3;2\right)\)
Phương trình AB: \(2\left(x+2\right)+3\left(y-1\right)=0\Leftrightarrow2x+3y+1=0\)