
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) Sửa đề: \(1-4x+4x^2\)
Ta có: \(1-4x+4x^2\)
\(=1^2-2\cdot1\cdot2x+\left(2x\right)^2\)
\(=\left(1-2x\right)^2\)
b) Ta có: \(x^2-x+\frac{1}{4}\)
\(=x^2-2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2\)
\(=\left(x-\frac{1}{2}\right)^2\)
c) Ta có: \(\left(x-y\right)^2-2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2\)
\(=\left(x-y-x-y\right)^2\)
\(=\left(-2y\right)^2=4y^2\)

a)
(2x2 + 3y)3 = 8x6 + 27y3 + 108x4 y2 + 54y2x2
b)
\(\left(\dfrac{1}{2}x-3\right)^3=\dfrac{1}{8}x^3-27-\dfrac{9}{4}x^2+\dfrac{27}{2}x\)

a, x2-2x+1 b,9x2+6x+1
=x2-2x1+12 =(3x)2+2.3x.1+12
=(x+1)2 =(3x+1)2
c,x2+4xy+4y2
=x2+2x.2y+(2y)2
=(x+2y)2
d,49-14y+y2
=72-2.7y+y2
=(7-y)2
e,(x-y)2+2(x-y)+1
=(x-y)2+2(x-y).1+12
=[(x-y)+1]2
=(x-y+1)2
Chúc bạn học tốt!
\(a,x^2-2x+1=\left(x-1\right)^2\)
\(b,9x^2+6x+1=\left(3x+1\right)^2\)
\(c,x^2+4xy+4y^2=\left(x+2y\right)^2\)
\(d,49-14y+y^2=\left(7-y\right)^2\)
\(e,\left(x-y\right)^2+2\left(x-y\right)+1=\left(x-y+1\right)^2\)

Giải phương trình
a.|x+4|−2|2x+3|=3−3x (1)
Lập bảng xét dấu
x -4 \(\dfrac{-3}{2}\)
x+4 - 0 + +
2x+3 - - 0 +
- Với \(x\le-4\) thì (1)
<=> -(x+4)+2(2x+3)=3-3x
<=> -x-4+4x+6=3-3x
<=> -x+4x+3x=4-6+3
<=> 6x=1
<=> x=\(\dfrac{1}{6}\) (L)
- Với \(-4\le x\le\dfrac{-3}{2}\) thì (1)
<=> (x+4)+2(2x+3)=3-3x
<=> x+4+4x+6=3-3x
<=> x+4x+3x=-4-6+3
<=> 8x=-7
<=> x=\(\dfrac{-7}{8}\) (L)
- Với \(x\ge\dfrac{-3}{2}\) thì (1)
<=> x+4-2(2x+3)=3-3x
<=> x+4-4x-6=3-3x
<=> x-4x+3x=-4+6+3
<=> 0x=5
<=> x (vô nghiệm) (L)
Vậy \(S=\varnothing\)
b.3|x−1|+|x−3|=x+5 (2)
Lập bảng xét dấu
x 1 3
x+1 - 0 + +
x-3 - - 0 +
+ Với \(x\le1\) thì (2)
<=> -3(x-1)-(x-3)=x+5
<=> -3x+3-x+3=x+5
<=> -3x-x-x=-3-3+5
<=> -5x=-1
<=> x= \(\dfrac{1}{5}\) (N)
+ Với \(1\le x\le3\) thì (2)
<=> 3(x-1)-(x-3)=x+5
<=> 3x-3-x+3=x+5
<=> 3x-x-x=3-3+5
<=> x=5(L)
+ Với \(x\ge3\) thì (2)
<=> 3(x-1)+(x-3)=x+5
<=> 3x-3+x-3=x+5
<=> 3x+x-x=3+3+5
<=> 3x=11
<=> x=\(\dfrac{11}{3}\) (N)
Vậy \(S=\left\{\dfrac{1}{5};\dfrac{11}{3}\right\}\)
Giải:
a) \(\left|x+4\right|-2\left|2x+3\right|=3-3x\)
\(\Leftrightarrow x+4-2\left(2x+3\right)=3-3x\)
\(\Leftrightarrow x+4-4x-6=3-3x\)
\(\Leftrightarrow x-4x+3x=3+6-4\)
\(\Leftrightarrow0x=5\)
Vậy phương trình vô nghiệm
b) \(3\left|x-1\right|+\left|x-3\right|=x+5\)
\(\Leftrightarrow3\left(x-1\right)+x-3=x+5\)
\(\Leftrightarrow3x-3+x-3=x+5\)
\(\Leftrightarrow3x+x-x=5+3+3\)
\(\Leftrightarrow3x=11\)
\(\Leftrightarrow x=\dfrac{11}{3}\)
Thử lại thấy thoả mãn
Vậy ...

\(a,\left(2x^2+1\right)+4x>2x\left(x-2\right)\)
\(\Leftrightarrow2x^2+1+4x>2x^2-4x\)
\(\Leftrightarrow4x+4x>-1\)
\(\Leftrightarrow8x>-1\)
\(\Leftrightarrow x>-\frac{1}{8}\)
\(b,\left(4x+3\right)\left(x-1\right)< 6x^2-x+1\)
\(\Leftrightarrow4x^2-4x+3x-3< 6x^2-x+1\)
\(\Leftrightarrow4x^2-x-3< 6x^2-x+1\)
\(\Leftrightarrow4x^2-6x^2< 1+3\)
\(\Leftrightarrow-2x^2< 4\)
\(\Leftrightarrow x^2>2\)
\(\Leftrightarrow x>\pm\sqrt{2}\)

\(\dfrac{x\left(3-x\right)\left(x^2+3\right)}{\left(x+1\right)^2}=2\)
<=> \(\dfrac{\left(3x-x^2\right)\left(x^2+3\right)}{x^2+2x+1}-2=0\)
<=> \(\dfrac{3x^3+9x-x^4-3x^2}{x^2+2x+1}-\dfrac{2\left(x^2+2x+1\right)}{x^2+2x+1}=0\)
=> 3x3 + 9x - x4 - 3x2 - 2x2 - 4x - 2 = 0
<=> - x4 + 3x3 - 5x2 + 5x - 2 = 0
<=> - x4 + x3 - 2x2 + 2x3 - 2x2 + 4x - x^2 + x - 2 = 0
<=> - x2(x2 - x + 2) + 2x(x2 - x + 2) - (x2 - x + 2) = 0
<=> (x2 - x + 2)(- x2 + 2x - 1) = 0
<=> - (x - 1)2(x2 - x + 2) = 0
<=> x = 1 (vì x2 - x + 2 \(\ge\) 1,75 > 0)
Vậy S = {1}
b/ \(2x+\dfrac{49}{2x+1}\le13\)
\(\Leftrightarrow\dfrac{x^2-6x+9}{2x+1}\le0\)
Vì \(x^2-6x+9=\left(x-3\right)^2\ge0\) nên
\(\Leftrightarrow2x+1\le0\)
\(\Leftrightarrow x\le-\dfrac{1}{2}\)
\(\left(A-B\right)^3=A^3-3A^2B+3AB^2-B^2\)
(đÚNG CHO MÌNH NHA)