![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bảng xét dấu :
\(x\) | \(\frac{1}{2}\) \(1\) |
\(1-x\) | \(-\) \(|\) \(-\) \(0\) \(+\) |
\(2x-1\) | \(-\) \(0\) \(+\) \(|\) \(+\) |
![](https://rs.olm.vn/images/avt/0.png?1311)
a.Ta có : \(\dfrac{x^2-4x+4}{x^3-2x^2-4x+8}=\dfrac{\left(x-2\right)^2}{\left(x-2\right)^2\left(x+2\right)}=\dfrac{1}{x+2}\)
Để \(\dfrac{1}{x+2}>0\) thì 1 và x+2 cùng dấu
mà 1>0
=>x + 2 > 0 <=> x > 2
\(\Rightarrow S=\left\{x|x>2\right\}\)
b, Ta có : \(x^2\ge0\Rightarrow x^2+1>0\)
Để \(\dfrac{7-8x}{x^2+1}>0\) thì 7 - 8x và \(x^2+1\) cùng dấu
mà \(x^2+1>0\Rightarrow7-8x>0\Leftrightarrow x< \dfrac{7}{8}\)
\(\Rightarrow S=\left\{x|x< \dfrac{7}{8}\right\}\)
c. Ta có bảng xét dấu:
x | -\(\infty\) -1 -\(\dfrac{1}{2}\) +\(\infty\) |
x+1 | - 0 + + |
2x+1 | - - 0 + |
\(\dfrac{2x+1}{x+1}\) | + \(//\) - 0 + |
![](https://rs.olm.vn/images/avt/0.png?1311)
1) \(\left(x-3\right)\left(x-5\right)+44\)
\(=x^2-3x-5x+15+44\)
\(=x^2-8x+59\)
\(=x^2-2.x.4+4^2+43\)
\(=\left(x-4\right)^2+43\ge43>0\)
\(\rightarrowĐPCM.\)
2) \(x^2+y^2-8x+4y+31\)
\(=\left(x^2-8x\right)+\left(y^2+4y\right)+31\)
\(=\left(x^2-2.x.4+4^2\right)-16+\left(y^2+2.y.2+2^2\right)-4+31\)
\(=\left(x-4\right)^2+\left(y+2\right)^2+11\ge11>0\)
\(\rightarrowĐPCM.\)
3)\(16x^2+6x+25\)
\(=16\left(x^2+\dfrac{3}{8}x+\dfrac{25}{16}\right)\)
\(=16\left(x^2+2.x.\dfrac{3}{16}+\dfrac{9}{256}-\dfrac{9}{256}+\dfrac{25}{16}\right)\)
\(=16\left[\left(x+\dfrac{3}{16}\right)^2+\dfrac{391}{256}\right]\)
\(=16\left(x+\dfrac{3}{16}\right)^2+\dfrac{391}{16}>0\)
-> ĐPCM.
4) Tương tự câu 3)
5) \(x^2+\dfrac{2}{3}x+\dfrac{1}{2}\)
\(=x^2+2.x.\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{9}+\dfrac{1}{2}\)
\(=\left(x+\dfrac{1}{3}\right)^2+\dfrac{7}{18}>0\)
-> ĐPCM.
6) Tương tự câu 5)
7) 8) 9) Tương tự câu 3).
![](https://rs.olm.vn/images/avt/0.png?1311)
Giải các bất phương trình sau :
a) \(\left(x-1\right)\left(x+3\right)< 0\)
Lập bảng xét dấu :
x x-1 x+3 (x-1)(x+3) -3 1 - 0 + - 0 - + + + - +
Nghiệm của bất phương trình là : \(-3< x< 1\)
b) \(\left(2x-1\right)\left(x+2\right)>0\)
Lập bảng xét dấu :
x 2x-1 x+2 (2x-1)(x+2) -2 1 2 0 0 - - + - + + - + +
Nghiệm của bất phương trình là : \(x< -2;x>\dfrac{1}{2}\)
c) \(\dfrac{3x-2}{2x-1}>0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3x-2\ge0\\2x-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}3x-2\le0\\2x-1< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\x>\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{2}{3}\\x< \dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge\dfrac{2}{3}\\x< \dfrac{1}{2}\end{matrix}\right.\)
d) \(\dfrac{3x+2}{x+1}>2\)
\(\Leftrightarrow\dfrac{3x+2}{x+1}-\dfrac{2\left(x+1\right)}{x+1}>0\)
\(\Leftrightarrow\dfrac{3x+2-2x-2}{x+1}>0\)
\(\Leftrightarrow\dfrac{x}{x+1}>0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x+1>0\end{matrix}\right.\\\left\{{}\begin{matrix}x\le0\\x+1< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x>-1\end{matrix}\right.\\\left\{{}\begin{matrix}x\le0\\x< -1\end{matrix}\right.\end{matrix}\right.\)
\(\left[{}\begin{matrix}x\ge0\\x< -1\end{matrix}\right.\)
a, (x-1)(x+3) <0
TH1: x-1<0<=>x<1
x+3>0<=>x>-3
=>-3<x<1
TH2: x-1>0<=>x>1
x+3<0<=>x<-3
=>Vô lý
Vậy S={x|-3<x<1}
b,(2x-1)(x+2)>0
TH1: 2x-1\(\ge\)0<=>2x\(\ge\)1<=>x\(\ge\)\(\dfrac{1}{2}\)
x+2\(\ge\)0<=>x\(\ge\)-2
=>x\(\ge\)\(\dfrac{1}{2}\)
TH2: 2x-1<0<=>2x<1<=>x<\(\dfrac{1}{2}\)
x+2<0<=>x<-2
=>x<-2
Vậy S={x|x<-2 hoặc x\(\ge\)\(\dfrac{1}{2}\)}
c, \(\dfrac{3x-2}{2x-1}\)>0 (Tử và mẫu cùng dấu)
TH1 3x-2\(\ge\)0<=>3x\(\ge\)2<=>x\(\ge\)2
2x-1>0<=>2x>1<=>x>\(\dfrac{1}{2}\)
=>x\(\ge\)2
TH2: 3x-2<0<=>3x<2<=>x<\(\dfrac{2}{3}\)
2x-1<0<=>2x<1<=>x<\(\dfrac{1}{2}\)
=>x<\(\dfrac{1}{2}\)
Vậy S={x|x\(\ge\)2 hoặc x<\(\dfrac{1}{2}\)}
d,\(\dfrac{3x+2}{x+1}>2\)
<=>\(\dfrac{3x+2}{x+1}-2\)>0
<=>\(\dfrac{3x-2-2x-2}{x+1}\)>0
<=>\(\dfrac{x-4}{x+1}\)>0 (Tử và mẫu cùng dấu)
TH1: x-4\(\ge\)0<=>x\(\ge\)4
x+1>0<=>x>-1
=>x\(\ge\)-4
TH2: x-4<0<=>x<4
x+1<0<=>x<-1
=>x<-1
Vậy S={x|x\(\ge\)-4 hoặc x<-1}
![](https://rs.olm.vn/images/avt/0.png?1311)
a) ( x - 2)( 6 - 2x ) > 0
Lập bảng xét dấu , ta có :
x x-2 6-2x Tích số 2 3 0 0 0 0 - + + + + - - + -
Vậy , nghiệm của BPT : 2 < x < 3
b) \(\dfrac{x-2}{1-x}>0\)
Lập bảng xét dấu , ta có :
x x-2 1-x Thương 1 2 0 0 0 - - + + - - - + - Vậy , ngiệm của BPT là : 1 < x < 2\
c) \(\dfrac{x-1}{x-3}\) > 0
Lập bảng xét dấu , ta có :
x x-1 x-3 Thương 1 3 0 0 0 - + + - - + + - + Vậy , nghiệm của BPT là : x < 1 hoặc : x > 3
\(\dfrac{10}{x^2+2x+1}>0\)
Ta có: \(\dfrac{10}{x^2+2x+1}=\dfrac{10}{\left(x+1\right)^2}>0\) với mọi x ≠ -1