K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2019

Hàm số bậc hai đã cho có a = 2; b = 4; c = -6;

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Vì a > 0, ta có bảng biến thiên

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Hàm số nghịch biến trên khoảng (-∞; -1) đồng biến trên khoảng (-1; +∞)

    Để vẽ đồ thị ta có trục đối xứng là đường thẳng x = -1; đỉnh I(-1;-8); giao với tục tung tại điểm (0;-6); giao với trục hoành tại các điểm (-3;0) và (1;0).

    Đồ thị của hàm số y   =   2 x 2   +   4 x   -   6 được vẽ trên hình 35.

Giải sách bài tập Toán 10 | Giải sbt Toán 10

17 tháng 5 2017

Hàm số bậc hai

Hàm số bậc hai

Hàm số bậc hai

Hàm số bậc hai

Hàm số bậc hai

13 tháng 4 2017

a) Tập xác định D = R

Bảng biến thiên

Đồ thị hàm số

Đồ thị: parabol có đỉnh I(1, -2) với trục đối xứng x = 1

Giao điểm với trục tung là P(0,-1)

Giao điểm với trục hoành A (1-√2, 0) và B((1+√2, 0)

b)

Tập xác định D = R

Đồ thị hàm số

Đồ thị: parabol có đỉnh I \(\left(\dfrac{3}{2},\dfrac{17}{4}\right)\)với trục đối xứng \(x=\dfrac{3}{2}\)

Giao điểm với trục tung là P(0,2)

Giao điểm với trục hoành A \(\left(\dfrac{3-\sqrt{17}}{2},0\right)\) và B\(\left(\dfrac{3+\sqrt{17}}{2},0\right)\)



17 tháng 5 2017

Tập xác định của hàm số \(D=\mathbb{R}\).

Ngoài ra \(f\left(-x\right)=\left(-x\right)^2-2\left|-x\right|+1=x^2-2\left|x\right|+1=f\left(x\right)\) Hàm số là hàm số chẵn. Đồ thị của nó nhận trục tung làm trục đối xứng. Để xét chiều biến thiên và vẽ đồ thị của nó chỉ cần xét chiều biến thiên và vẽ đồ thị của nó trên nửa khoảng [0; \(+\infty\)), rồi lấy đối xứng qua Oy. Với \(x\ge0\), có \(f\left(x\right)=x^2-2x+1\)

Ôn tập chương II

17 tháng 5 2017

a) Ta có thể viết

\(y=\left\{{}\begin{matrix}2x-3;\left(x\ge\dfrac{3}{2}\right)\\-2x+3;\left(x< \dfrac{3}{2}\right)\end{matrix}\right.\)

Hàm số bậc nhất y=ax+b

4 tháng 1 2018

Bảng biến thiên

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Hàm số đồng biến trên khoảng ( - ∞ ;   0 ) nghịch biến trên khoảng ( 0 ;   + ∞ ) , hàm số là chẵn.

    Đỉnh parabol I(0;-2); đồ thị đi qua điểm (1;-4) và điểm (-1;-4).

    Đồ thị hàm số y   =   - 2 ( x 2   +   1 ) được vẽ trên hình 38.

Giải sách bài tập Toán 10 | Giải sbt Toán 10

 

19 tháng 4 2019

Bảng biến thiên

Giải sách bài tập Toán 10 | Giải sbt Toán 10

 Hàm số nghịch biến trên khoảng ( - ∞ ;   - 1 ) đồng biến trên khoảng ( - 1 ;   + ∞ )

    Đỉnh parabol ( - 1 ;   2   - 3 )

    Đồ thị hàm số được vẽ trên hình 37.

Giải sách bài tập Toán 10 | Giải sbt Toán 10

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Từ đồ thị ta thấy đồ thị hàm số đi lên trong khoảng \(\left( { - 1; + \infty } \right)\) nên hàm số đồng biến trong khoảng \(\left( { - 1; + \infty } \right)\). Trong khoảng \(\left( { - \infty ; - 1} \right)\)  thì hàm số nghich biến.

Bảng biến thiên:

b) Từ đồ thị ta thấy đồ thị hàm số đi lên trong khoảng \(\left( { - \infty ;1} \right)\) nên hàm số đồng biến trong khoảng \(\left( { - \infty ;1} \right)\). Trong khoảng \(\left( {1; + \infty } \right)\)  thì hàm số nghịch biến.

Bảng biến thiên: