K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2021

tách nhỏ câu hỏi ra từ câu 3 vẫn dài

13 tháng 11 2021

1: \(\Leftrightarrow\left(x+5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=4\end{matrix}\right.\)

4 tháng 2 2022

b. delta = \(\left(2n-1\right)^2-4.1.n\left(n-1\right)=4n^2-4n+1-4n^2+4n=1>0\)

pt luôn có 2 nghiệm phân biệt

c.\(\left\{{}\begin{matrix}x_1=\dfrac{2n-1-1}{2}=n-1\\x_2=\dfrac{2n-1+1}{2}=n\end{matrix}\right.\)

\(x_1^2-2x_2+3=\left(n-1\right)^2-2n+3=n^2-4n+4=\left(n-2\right)^2\)

(số bình phương luôn lớn hơn bằng 0) với mọi n

4 tháng 2 2022

2, Ta có : \(\Delta=\left(2n-1\right)^2-4n\left(n-1\right)=4n^2-4n+1-4n^2+4n=1>0\)

Vậy pt luôn có 2 nghiệm pb 

3, Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2n-1\\x_1x_2=n\left(n-1\right)\end{matrix}\right.\)

Vì x1 là nghiệm của pt trên nên ta được 

\(x_1^2=\left(2n-1\right)x_1-n\left(n-1\right)\)

Thay vào ta được 

\(2nx_1-x_1-n^2+n-2x_2+3\)

bạn kiểm tra lại đề nhé 

\(A=\dfrac{3}{2}-tana\cdot cos^2a\)

\(=\dfrac{3}{2}-\dfrac{sina}{cosa}\cdot cos^2a\)

\(=\dfrac{3}{2}-sina\cdot cosa\)

\(=\dfrac{3}{2}-\dfrac{1}{2}sin2a\)
\(0^0< a< 90^0\)

=>\(0< =2a< =180^0\)

=>\(sin2a\in\left[-1;1\right]\)

\(-1< =sin2a< =1\)

=>\(\dfrac{1}{2}>=-\dfrac{1}{2}sin2a>=-\dfrac{1}{2}\)

=>\(\dfrac{7}{2}>=-\dfrac{1}{2}sin2a+3>=\dfrac{5}{2}\)

=>\(\dfrac{5}{2}< =y< =\dfrac{7}{2}\)

\(y_{min}=\dfrac{5}{2}\) khi sin2a=1

=>\(2a=\dfrac{\Omega}{2}+k2\Omega\)

=>\(a=\dfrac{\Omega}{4}+k\Omega\)

mà 0<a<90

nên a=45

 

 

39) Ta có: \(\sqrt{49-5\sqrt{96}}-\sqrt{49+5\sqrt{96}}\)

\(=\sqrt{49-20\sqrt{6}}-\sqrt{49+20\sqrt{6}}\)

\(=5-2\sqrt{6}-5-2\sqrt{6}\)

\(=-4\sqrt{6}\)

40) Ta có: \(\sqrt{35+12\sqrt{6}}-\sqrt{35-12\sqrt{6}}\)

\(=3\sqrt{3}+2\sqrt{2}-3\sqrt{3}+2\sqrt{2}\)

\(=4\sqrt{2}\)

41) Ta có: \(\sqrt{13+2\sqrt{42}}+\sqrt{13-2\sqrt{42}}\)

\(=\sqrt{7}+\sqrt{6}+\sqrt{7}-\sqrt{6}\)

\(=2\sqrt{7}\)

a: Xét (O) có

MA là tiếp tuyến

MB là tiếp tuyến

Do đó: MA=MB

hay M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

nên O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra OM⊥AB

Bài 1: 

a: Để hai đường thẳng song song thì \(\left\{{}\begin{matrix}m^2=4\\m\ne2\end{matrix}\right.\Leftrightarrow m=-2\)

b: Để hai đường thẳng vuông góc thì \(4m^2=-1\)(vô lý)

Bài 2: 

a: Để hàm số nghịch biến thì \(2m-1< 0\)

hay \(m< \dfrac{1}{2}\)