Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b. delta = \(\left(2n-1\right)^2-4.1.n\left(n-1\right)=4n^2-4n+1-4n^2+4n=1>0\)
pt luôn có 2 nghiệm phân biệt
c.\(\left\{{}\begin{matrix}x_1=\dfrac{2n-1-1}{2}=n-1\\x_2=\dfrac{2n-1+1}{2}=n\end{matrix}\right.\)
\(x_1^2-2x_2+3=\left(n-1\right)^2-2n+3=n^2-4n+4=\left(n-2\right)^2\)
(số bình phương luôn lớn hơn bằng 0) với mọi n
2, Ta có : \(\Delta=\left(2n-1\right)^2-4n\left(n-1\right)=4n^2-4n+1-4n^2+4n=1>0\)
Vậy pt luôn có 2 nghiệm pb
3, Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2n-1\\x_1x_2=n\left(n-1\right)\end{matrix}\right.\)
Vì x1 là nghiệm của pt trên nên ta được
\(x_1^2=\left(2n-1\right)x_1-n\left(n-1\right)\)
Thay vào ta được
\(2nx_1-x_1-n^2+n-2x_2+3\)
bạn kiểm tra lại đề nhé
\(A=\dfrac{3}{2}-tana\cdot cos^2a\)
\(=\dfrac{3}{2}-\dfrac{sina}{cosa}\cdot cos^2a\)
\(=\dfrac{3}{2}-sina\cdot cosa\)
\(=\dfrac{3}{2}-\dfrac{1}{2}sin2a\)
\(0^0< a< 90^0\)
=>\(0< =2a< =180^0\)
=>\(sin2a\in\left[-1;1\right]\)
\(-1< =sin2a< =1\)
=>\(\dfrac{1}{2}>=-\dfrac{1}{2}sin2a>=-\dfrac{1}{2}\)
=>\(\dfrac{7}{2}>=-\dfrac{1}{2}sin2a+3>=\dfrac{5}{2}\)
=>\(\dfrac{5}{2}< =y< =\dfrac{7}{2}\)
\(y_{min}=\dfrac{5}{2}\) khi sin2a=1
=>\(2a=\dfrac{\Omega}{2}+k2\Omega\)
=>\(a=\dfrac{\Omega}{4}+k\Omega\)
mà 0<a<90
nên a=45
39) Ta có: \(\sqrt{49-5\sqrt{96}}-\sqrt{49+5\sqrt{96}}\)
\(=\sqrt{49-20\sqrt{6}}-\sqrt{49+20\sqrt{6}}\)
\(=5-2\sqrt{6}-5-2\sqrt{6}\)
\(=-4\sqrt{6}\)
40) Ta có: \(\sqrt{35+12\sqrt{6}}-\sqrt{35-12\sqrt{6}}\)
\(=3\sqrt{3}+2\sqrt{2}-3\sqrt{3}+2\sqrt{2}\)
\(=4\sqrt{2}\)
41) Ta có: \(\sqrt{13+2\sqrt{42}}+\sqrt{13-2\sqrt{42}}\)
\(=\sqrt{7}+\sqrt{6}+\sqrt{7}-\sqrt{6}\)
\(=2\sqrt{7}\)
a: Xét (O) có
MA là tiếp tuyến
MB là tiếp tuyến
Do đó: MA=MB
hay M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
nên O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra OM⊥AB
Bài 1:
a: Để hai đường thẳng song song thì \(\left\{{}\begin{matrix}m^2=4\\m\ne2\end{matrix}\right.\Leftrightarrow m=-2\)
b: Để hai đường thẳng vuông góc thì \(4m^2=-1\)(vô lý)
Bài 2:
a: Để hàm số nghịch biến thì \(2m-1< 0\)
hay \(m< \dfrac{1}{2}\)
tách nhỏ câu hỏi ra từ câu 3 vẫn dài
1: \(\Leftrightarrow\left(x+5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=4\end{matrix}\right.\)