Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em kiểm tra lại đề bài nhé! Tham khảo link:
Câu hỏi của Phan Thúy Vy - Toán lớp 7 - Học toán với OnlineMath
\(A=\left|3,7-x\right|+2,5\)
\(\Rightarrow GTLN\)là 2,5
Khi 3,7 - x = 0
x = -3,7
| 7x - 10 | + 7x = 10
| 7x - 10 | = 10 - 7x
=> 7x - 10 thuộc { 10 - 7x; -10 + 7x }
+) 7x - 10 = 10 - 7x
7x + 7x = 10 + 10
14x = 20
x = 10/7
+) 7x - 10 = -10 + 7x
7x - 7x = -10 + 10
0x = 0
=> x = 0
Học tốt O.o
TH1 : x < 10/7
=> / 7x - 10 / +7x = 10 - 7x + 7x = 10 ( luôn đúng )
=> với mọi x < 10/7, ta luôn có / 7x - 10 / + 7x = 10
TH2 : x = 10/7
=> /7x - 10/ + 7x = 0 + 7x = 10
=> x = 10/ 7 ( thỏa mãn )
TH3 : x > 10/7
=> / 7x - 10 / + 7x = 7x - 10 + 7x = 10
=> 14 x = 10
=> x = 10/ 7 ( loại )
Vậy với mọi x < 10/7, biểu thức trên luôn đúng
Lời giải:
a. Với $n$ nguyên khác -3, để $B$ nguyên thì:
$2n+9\vdots n+3$
$\Rightarrow 2(n+3)+3\vdots n+3$
$\Rightarrow 3\vdots n+3$
$\Rightarrow n+3\in\left\{\pm 1; \pm 3\right\}$
$\Rightarrow n\in\left\{-2; -4; 0; -6\right\}$
b.
$B=\frac{2n+9}{n+3}=\frac{2(n+3)+3}{n+3}=2+\frac{3}{n+3}$
Để $B_{\max}$ thì $\frac{3}{n+3}$ max
Điều này đạt được khi $n+3$ là số nguyên dương nhỏ nhất
Tức là $n+3=1$
$\Leftrightarrow n=-2$
c. Để $B$ min thì $\frac{3}{n+3}$ min
Điều này đạt được khi $n+3$ là số nguyên âm lớn nhất
Tức là $n+3=-1$
$\Leftrightarrow n=-4$
Để M là số nguyên
Thì (x2–5) chia hết cho (x2–2)
==>(x2–2–3) chia hết cho (x2–2)
==>[(x2–2)—3] chia hết cho (x2–2)
Vì (x2–2) chia hết cho (x2–2)
Nên 3 chia hết cho (x2–2)
==> (x2–2)€ Ư(3)
==> (x2–2) €{1;-1;3;-3}
TH1: x2–2=1
x2=1+2
x2=3
==> ko tìm được giá trị của x
TH2: x2–2=-1
x2=-1+2
x2=1
12=1
==>x=1
TH3: x2–2=3
x2=3+2
x2=5
==> không tìm được giá trị của x
TH4: x2–2=-3
x2=-3+2
x2=-1
(-1)2=1
==> x=-1
Vậy x € {1;—1)
Tìm x :
x + {(x-3) - [(x+3) - (-x - 2)]} =x
Ai nhanh mik tick nha mik đang cần gấp mong mng giúp mik
x + {(x - 3) - [(x + 3) - (-x - 2)]} = x
=> x + {x - 3 - [x + 3 + x + 2]} = x
=> x + {x - 3 - x - 3 - x - 2} = x
=> x + x - 3 - x - 3 - x - 2 = x
=> (x - x) + (x - x) - (3 + 3 + 2) = x
=> 0 + 0 - 8 = x
=> - 8 = x
vậy x = - 8
=>(x-3)-[(x+3)-(-x-2)]=0
=>(x-3)-(x+3+x+2)=0
=>x-3-2x-5=0
=>-x-8=0
=>-x=8=>x=-8
Đặt A = 12 + 32 + 52 + ... + 972 + 992
Đặt B = 22 + 42 + 62 + ... + 982
Khi đó A + B = 12 + 22 + 32 + ... + 982 + 992
= 1.1 + 2.2 + 3.3 + ... + 98.98 + 99.99
= 1.(2 - 1) + 2(3 - 1) + 3(4 - 1) + ... + 98(99 - 1) + 99(100 - 1)
= 1.2 + 2.3 + 3.4 + .... + 98.99 + 99.100 - (1 + 2 + 3 + ... + 99)
= 1.2 + 2.3 + 3.4 + .... + 98.99 + 99.100 - 99.(99 + 1):2
= 1.2 + 2.3 + 3.4 + .... + 98.99 + 99.100 - 5050
Đặt C = 1.2 + 2.3 + 3.4 + .... + 98.99 + 99.100
=> 3C = 1.2.3 + 2.3.3 + 3.4.3 + ... + 98.99.3 + 99.100.3
3C = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 98.99.(100 - 97) + 99.100.(101 - 98)
3C = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + .... + 98.99.100 - 97.98.99 + 99.100.101 - 98.99.100
3C = 99.100.101
C = 99.100.101 : 3 = 333 300
Khi đó A+ B = C - 5050 = 333 300 - 5050 = 328 250
Lại có B = 22 + 42 + 62 + ... + 982
= 22(12 + 22 + 32 + ... + 492)
= 4(12 + 22 + 32 + ... + 492)
Đặt D = 12 + 22 + 32 + ... + 492
= 1.1 + 2.2 + 3.3 + ... + 49.49
= 1.(2 - 1) + 2.(3 - 1) + 3.(4 - 1) + ... + 49(50 - 1)
= 1.2. + 2.3 + 3.4 + ... + 49.50 - (1 + 2 + 3 + 4 + ... + 49)
= 1.2. + 2.3 + 3.4 + ... + 49.50 - 49.(49 + 1) : 2
= 1.2 + 2.3 + 3.4 + ... + 49.50 - 1225
Khi đó : 1.2 + 2.3 + 3.4 + ... + 49.50
= (1.2.3 + 2.3.3 + ... + 49.50.3) : 3
= [1.2.3 + 2.3.(4 - 1) + ... + 49.50(51 - 48)] : 3
= (1.2.3 + 2.3.4 - 1.2.3 + ... + 49.50.51 - 48.49.50) : 3
= 49.50.51 : 3
= 41650
Khi đó D = 41650 - 1225 = 40425
Khi đó B = 40425 x 4 = 161700
Lại có : A + B = 328250
=> A + 161700 = 328250
=> A = 166550
Vậy 12 + 32 + 52 + ... + 972 + 992 = 166550
4620000