K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2020

a)\(\left(4x^3-xy^2+y^3\right)\left(x^2y+2xy^2-2y^3\right)\)

\(=x^2y\left(4x^3-xy^2+y^3\right)+2xy^2\left(4x^3-xy^2+y^3\right)\)

\(-2y^3\left(4x^3-xy^2+y^3\right)\)

\(=4x^5y-x^3y^3+x^2y^4+8x^4y^2-2x^2y^4+2xy^5\)

\(-8x^3y^3+2xy^5-2y^6\)

\(=-2y^6+4x^5y+\left(2xy^5+2xy^5\right)+8x^4y^2+\left(x^2y^4-2x^2y^4\right)\)

\(-\left(x^3y^3+8x^3y^3\right)\)

\(=-2y^6+4x^5y+4xy^5+8x^4y^2-x^2y^4-9x^3y^3\)

24 tháng 2 2020

b) 

(!)  \(2\left(x+y\right)^2-7\left(x+y\right)+5\)

\(=2\left(x+y\right)^2-2\left(x+y\right)-5\left(x+y\right)+5\)

\(=2\left(x+y\right)\left(x+y-1\right)-5\left(x+y-1\right)\)

\(=\left(2x+2y-5\right)\left(x+y-1\right)\)

(!!) \(\left(x+y+z\right)^2-x^2-y^2-z^2\)

\(=\left(x^2+y^2+z^2+2xy+2yz+2zx\right)-x^2-y^2-z^2\)

\(=2\left(xy+yz+zx\right)\)

13 tháng 10 2017

2/a/ \(x\left(x+1\right)^2\)

b/ \(\left(y+x\right)\left(y-1\right)\)

c/ \(\left(x+1\right)\left(3x-10\right)\)

d/ \(-3\left(2z+x-y\right)\left(2z+y-x\right)\)

18 tháng 9 2018

\(x^8+x^4+1\)

\(=\left(x^8+2x^4+1\right)-x^4\)

\(=\left(x^4+1\right)^2-x^4\)

\(=\left(x^4+1-x^2\right)\left(x^4+1+x^2\right)\)

\(=\left(x^4-x^2+1\right)\left(x^4+2x^2-x^2+1\right)\)

\(=\left(x^4-x^2+1\right)[\left(x^2+1\right)^2-x^2]\)

\(=\left(x^4-x^2+1\right)\left(x^2+1-x\right)\left(x^2+1+x\right)\)

2 tháng 10 2019

b, x^6+27=x^2*3+3^3

                 =(x^2+3)(x^4-3x^2+9)

hok tốt

2 tháng 10 2019

a, x^2 + 2xy + y^2 - x - y - 12

= (x^2 + 2xy + y^2) - (x + y) - 16 + 4

= (x + y)^2 - 4^2 - (x + y - 4)

= (x + y - 4)(x + y + 4) - (x + y - 4)

= (x + y - 4)(x + y + 4 - 1)

= (x + y - 4)(x + y + 3)

b, x^6 + 27

= (x^2)^3 + 3^3

= (x^2 + 3)[(x^2)^2 - 3x^2 + 3^2]

= (x^2 + 3)(x^4 - 3x^2 + 9)

c, x^7 + x^5 + 1

=x^7 - x^6 + x^5 - x^3 + x^2 + x^6 - x^5 + x^4 - x^2 + x + x^5 - x^4 + x^3 - x + 1
= (x^2 + x + 1)(x^5 - x^4 + x^3 - x+1)

7 tháng 7 2016

a)  \(\left(x+y\right)^5-x-y=\left(x+y\right)^5-\left(x+y\right)=\left(x+y\right)\left[\left(x+y\right)^4-1\right]\)

\(\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)     #áp dụng hàng đẳng thức#

c) \(x^9-x^7-x^6-x^5+x^4+x^3+x^2+1\)nhóm vào là đc

b) \(\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3+\left(y^2+z^2\right)^3\)

=\(\left(y^2+x^2\right)\left[\left(x^2+y^2\right)^2-\left(x^2+y^2\right)\left(z^2-x^2\right)+\left(z^2-x^2\right)^2\right]+\left(y^2+z^2\right)^3\)

\(\left(y^2+z^2\right)\left[x^4+y^4+2x^2y^2-x^2z^2+x^4-y^2z^2+x^2y^2+z^4+x^4-2x^2z^2+y^4+z^4+2y^2z^2\right]\)

=\(=\left(y^2+z^2\right)\left(2x^4+2y^4+2z^4+3x^2y^2-3x^2z^2+y^2z^2\right)\)

7 tháng 7 2016

câu a ko phải -x-y mà là -x^5-y^5 bạn à

17 tháng 12 2017

a, A = (x-2)^2 = (12-2)^2 = 10^2 = 100

b, = x^3y^3-1/3x^2y^2+2x^2y^2z

k mk nha

17 tháng 8 2019

a) \(x^7+x^5+x^4+x^3+x^2+1\)

\(=\left(x^7+x^4\right)+\left(x^5+x^2\right)+\left(x^3+1\right)\)

\(=x^4\left(x^3+1\right)+x^2\left(x^3+1\right)+\left(x^3+1\right)\)

\(=\left(x^3+1\right)\left(x^4+x^2+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1\right)\left(x^4+x^2+1\right)\)

9 tháng 10 2016

1, a, = (3x+15-x+7 )( 3x+15+x-7)

= ( 2x +22)( 4x+8)

=8( x+11)( x+2)

b, = ( 5x-5y-4x - 4y)(5x-5y+4x+4y)

=(x-9y)(x-y)

2.a,ta có : (n+6)2- (n-6)2 = (n+6-n+6)( n+6+n-6) = 12.2n=24n chia hết cho 24 ( vì 24 chia hết cho 24) (ĐPCM)

b,

Ta có: n^3+3.n^2-n-3=n^2.(n+3) -(n+3)=(n+3).(n-1).(n+1).
-Do n là số lẻ nên đặt n=2k+1.(k thuộc N).
=> n^3+3.n^2-n-3= (2k+4).2k.(2k+2)= 8.k.(k+1).(k+2).
-Do k(k+1) là tích 2 số tự nhiên liên tiếp nên k(k+1) chia hết cho 2 và k(k+1)(k+2) là tích 3 số tự nhiên liên tiếp nên k(k+1)(k+2) chia hết cho 3.
=> 8k(k+1)(k+2) chia hết cho 16 và chia hết cho 3. Mà (16,3)=1.
=> 8k(k+1)(k+2) chia hết cho 16.3.
=> n^3+3.n^2-n-3 chia hết cho 48 với mọi n là số tự nhiên lẻ (đpcm). 

27 tháng 7 2019

21(x-y)2-7(y-x)3 

=21(x2-y2)-7(y2-x2)

=21x2-21y2-7y2+7x2

=28x2-28y2

=28(x2-y2)