K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2021

2b)

xét vế trái ta có

=\(\left(\sqrt{x}-\sqrt{y}\right).\dfrac{\sqrt{x^2y}+\sqrt{xy^2}}{\sqrt{xy}}\) \(\left(\sqrt{x}-\sqrt{y}\right).\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}\)=x-y

3b)

để A<0 \(\Rightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}}< 0\)

\(\Rightarrow\sqrt{x}-1< 0\)\(\Rightarrow\sqrt{x}< 1\)\(\Rightarrow x< 1\)

a: Ta có: \(\sqrt{9x^2-6x+1}=5\)

\(\Leftrightarrow\left|3x-1\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=5\\3x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=6\\3x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\)

15)

ĐKXĐ: \(x\ge1\)

Ta có: \(\sqrt{x+3}+\sqrt{x-1}=2\)

\(\Leftrightarrow2x+2+2\sqrt{\left(x+3\right)\left(x-1\right)}=4\)

\(\Leftrightarrow2\sqrt{\left(x+3\right)\left(x-1\right)}=2-2x\)

\(\Leftrightarrow\sqrt{\left(x+3\right)\left(x-1\right)}=1-x\)

\(\Leftrightarrow\left(x+3\right)\left(x-1\right)=\left(1-x\right)^2\)

\(\Leftrightarrow x^2-x+3x-3=x^2-2x+1\)

\(\Leftrightarrow2x-3+2x-1=0\)

\(\Leftrightarrow4x-4=0\)

\(\Leftrightarrow4x=4\)

hay x=1(thỏa ĐK)

Vậy: S={1}

Câu 1: D

Câu 2: C

Câu 3: C

Câu 4: D

Câu 5: A

14 tháng 5 2022

 1: D

 2: C

 3: C

 4: D

 5: A

NV
23 tháng 2 2021

Kẻ đường kính AF, gọi G là trung điểm CF \(\Rightarrow\) G cố định. Nối GH cắt AN kéo dài tại J

ANCF nội tiếp \(\Rightarrow\widehat{ANC}+\widehat{AFC}=180^0\)

G và H là trung điểm các dây CF, CN \(\Rightarrow\left\{{}\begin{matrix}OH\perp CN\\OG\perp CF\end{matrix}\right.\)

\(\Rightarrow OHCG\) nội tiếp \(\Rightarrow\widehat{OHG}=\widehat{OCG}\) (cùng chắn OG)

Mà \(\widehat{OCG}=\widehat{AFC}\) (2 góc đáy tam giác OCF cân) 

\(\Rightarrow\widehat{OHG}=\widehat{AFC}\Rightarrow\widehat{OHG}+\widehat{ANC}=180^0\)

Lại có \(\widehat{GHC}=\widehat{NHJ}\) (đối đỉnh), \(\widehat{OHG}+\widehat{GHC}=90^0\)

\(\Rightarrow\widehat{OHG}=90^0-\widehat{GHC}=90^0-\widehat{NHJ}\)

\(\Rightarrow\widehat{ANC}+90^0-\widehat{NHJ}=180^0\Rightarrow\widehat{ANC}-\widehat{NHJ}=90^0\)

\(\Leftrightarrow\widehat{NJH}+\widehat{NHJ}-\widehat{NHJ}=90^0\Leftrightarrow\widehat{NJH}=90^0\)

Hay \(GH\perp AN\)

Mà \(IH\perp AN\Rightarrow I\) trùng J hay G;H;I thẳng hàng

\(\Rightarrow\) IH luôn đi qua G cố định

Do I \(AI\perp IG\Rightarrow I\) luôn thuộc đường tròn đường kính AG cố định

NV
23 tháng 2 2021

Hình vẽ:

undefined

NV
28 tháng 2 2021

Theo tính chất 2 tiếp tuyến: \(\left\{{}\begin{matrix}AC=CM\\BD=DM\end{matrix}\right.\) \(\Rightarrow\dfrac{CM}{DM}=\dfrac{AC}{BD}\)

Mặt khác do AC//BD (cùng vuông góc AB)

\(\Rightarrow\dfrac{AC}{BD}=\dfrac{CN}{BN}\) (Talet) \(\Rightarrow\dfrac{CM}{DM}=\dfrac{CN}{BN}\Rightarrow MN||BD\)

Cũng theo Talet: \(\dfrac{CN}{BN}=\dfrac{AN}{DN}\Rightarrow\dfrac{BC}{BN}=\dfrac{AD}{DN}\Rightarrow\dfrac{BN}{BC}=\dfrac{ND}{AD}\) (1)

 \(\dfrac{MN}{AC}=\dfrac{ND}{AD}\) ; \(\dfrac{NH}{AC}=\dfrac{BN}{BC}\) (2)

(1); (2) \(\Rightarrow\dfrac{MN}{AC}=\dfrac{NH}{AC}\Rightarrow MN=NH\)

undefined

19 tháng 5 2022

Với `x >= 0,x \ne 1` có:

`C=A/B=A:B=[\sqrt{x}+1]/[x+\sqrt{x}+1]:(\sqrt{x}/[x\sqrt{x}-1]+1/[\sqrt{x}-1])`

`C=[\sqrt{x}+1]/[x+\sqrt{x}+1]:[\sqrt{x}+x+\sqrt{x}+1]/[(\sqrt{x}-1)(x+\sqrt{x}+1)]`

`C=[\sqrt{x}+1]/[x+\sqrt{x}+1].[(\sqrt{x}-1)(x+\sqrt{x}+1)]/[x+2\sqrt{x}+1]`

`C=[\sqrt{x}+1]/[x+\sqrt{x}+1].[(\sqrt{x}-1)(x+\sqrt{x}+1)]/[(\sqrt{x}+1)^2]`

`C=[\sqrt{x}-1]/[\sqrt{x}+1]`

19 tháng 5 2022

1.Thế \(x=4\) vào A, ta được:

\(A=\dfrac{\sqrt{4}+1}{4+\sqrt{4}+1}=\dfrac{2+1}{4+2+1}=\dfrac{3}{7}\)

2.

\(B=\dfrac{\sqrt{x}}{x\sqrt{x}-1}+\dfrac{1}{\sqrt{x}-1}\)

\(B=\dfrac{\sqrt{x}}{\sqrt{x}^3-1}+\dfrac{1}{\sqrt{x}-1}\)

\(B=\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{1}{\sqrt{x}-1}\)

\(B=\dfrac{\sqrt{x}+\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(B=\dfrac{x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(B=\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(C=\dfrac{A}{B}\)

\(C=\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}:\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(C=\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}.\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2}\)

\(C=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

14 tháng 6 2021

\(A=\dfrac{2\sqrt{x}+17}{\sqrt{x+5}}=\dfrac{2\sqrt{x}+10}{\sqrt{x}+5}+\dfrac{7}{\sqrt{x}+5}=2+\dfrac{7}{\sqrt{x}+5}\) 

Để \(A\) ∈ \(Z\) thì \(\dfrac{7}{\sqrt{x}+5}\) phải ∈ \(Z\)

=> \(\sqrt{x}+5\) ∈ \(Ư\left(7\right)=\left\{-7;-1;1;7\right\}\)

# Với \(\sqrt{x}+5=-7=>\sqrt{x}=-12\)(Loại)

#Với \(\sqrt{x}+5=-1=>\sqrt{x}=-6\)(Loại)

#Với \(\sqrt{x}+5=1=>\sqrt{x}=-4\left(Loại\right)\)

#Với \(\sqrt{x}+5=7=>\sqrt{x}=2< =>x=4\left(Nhận\right)\)

Vậy \(x=4\) thì \(A\)\(Z\)

28 tháng 9 2021

\(\sqrt[3]{\dfrac{a^4}{b^2\left(a^2-ab+b^2\right)}}+\sqrt[3]{\dfrac{b^4}{c^2\left(b^2-bc+c^2\right)}}\sqrt[3]{\dfrac{c^4}{a^2\left(c^2-ac+b^2\right)}}\) \(\text{≥}3\)

\(Ta\) \(Có\) : \(\sqrt[3]{\dfrac{a^4}{b^2\left(a^2-ab+b^2\right)}}=\sqrt[3]{\dfrac{a^6}{ab.ab\left(a^2-ab+b^2\right)}}=\dfrac{a^2}{\sqrt[3]{ab.ab.\left(a^2-ab+b^2\right)}}\) 

\(Áp\) \(dụng\) \(bđt\) \(AM-GM\) 

\(\sqrt[3]{ab.ab\left(a^2-ab+b^2\right)}\text{≤}\)  \(\dfrac{ab+ab+a^2-ab+b^2}{3}\) 

\(=>\dfrac{a^2}{\sqrt[3]{ab.ab\left(a^2-ab+b^2\right)}}\) \(\text{≥}\) \(\dfrac{3a^2}{a^2+ab+b^2}\) \(Hay\) \(\sqrt[3]{\dfrac{a^4}{b^2\left(a^2-ab+b^2\right)}}\text{≥}\dfrac{3a^2}{a^2+ab+b^2}\)

Tương tự ta cũng có : 

\(\sqrt[3]{\dfrac{b^4}{c^2\left(b^2-bc+c^2\right)}}\text{≥}\dfrac{3b^2}{b^2+bc+c^2}\) 

\(\sqrt[3]{\dfrac{c^4}{a^2\left(c^2-ac+a^2\right)}}\text{≥}\dfrac{3c^2}{a^2+ac+c^2}\)

\(=>\text{​​}\text{​​}\)\(\sqrt[3]{\dfrac{a^4}{b^2\left(a^2-ab+b^2\right)}}+\sqrt[3]{\dfrac{b^4}{c^2\left(b^2-bc+c^2\right)}}\sqrt[3]{\dfrac{c^4}{a^2\left(c^2-ac+b^2\right)}}\)  \(\text{≥}\) \(3\left(\dfrac{a^2}{a^2+ab+b^2}+\dfrac{b^2}{b^2+bc+c^2}+\dfrac{c^2}{a^2+ac+c^2}\right)\) 

Cần c/m \(\left(\dfrac{a^2}{a^2+ab+b^2}+\dfrac{b^2}{b^2+bc+c^2}+\dfrac{c^2}{a^2+ac+c^2}\right)\) ≥ \(1\) 

Ta có : \(\dfrac{a^2}{a^2+ab+b^2}\text{≥}\dfrac{1}{3}\) 

\(< =>3a^2\text{≥}a^2+ab+b^2\) \(< =>2a^2-b\left(a+b\right)\text{≥}0\) (1)

Lại có : \(a^2\text{≥}-b\left(a+b\right)\) (2)

Từ (1) và (2) => \(\dfrac{a^2}{a^2+ab+b^2}\text{≥}\dfrac{1}{3}\)

Tương tự ta cũng có :

 \(\dfrac{b^2}{b^2+bc+c^2}\text{≥}\dfrac{1}{3}\) 

\(\dfrac{c^2}{a^2+ac+c^2}\text{≥}\dfrac{1}{3}\)

Do đó \(\dfrac{a^2}{a^2+ab+b^2}+\dfrac{b^2}{b^2+bc+c^2}+\dfrac{c^2}{a^2+ac+c^2}\text{≥}1\)

Suy ra :  \(\sqrt[3]{\dfrac{a^4}{b^2\left(a^2-ab+b^2\right)}}+\sqrt[3]{\dfrac{b^4}{c^2\left(b^2-bc+c^2\right)}}\sqrt[3]{\dfrac{c^4}{a^2\left(c^2-ac+b^2\right)}}\) \(\text{≥}\) \(3\) 

Đẳng thức xảy ra <=> \(a=b=c=1\)

 

 

 

16 tháng 7 2021
ext-9bosssssssssssssssss

39) Ta có: \(\sqrt{49-5\sqrt{96}}-\sqrt{49+5\sqrt{96}}\)

\(=\sqrt{49-20\sqrt{6}}-\sqrt{49+20\sqrt{6}}\)

\(=5-2\sqrt{6}-5-2\sqrt{6}\)

\(=-4\sqrt{6}\)

40) Ta có: \(\sqrt{35+12\sqrt{6}}-\sqrt{35-12\sqrt{6}}\)

\(=3\sqrt{3}+2\sqrt{2}-3\sqrt{3}+2\sqrt{2}\)

\(=4\sqrt{2}\)

41) Ta có: \(\sqrt{13+2\sqrt{42}}+\sqrt{13-2\sqrt{42}}\)

\(=\sqrt{7}+\sqrt{6}+\sqrt{7}-\sqrt{6}\)

\(=2\sqrt{7}\)