K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 10:

a: Thay x=3 vào A, ta được:

\(A=\left(\dfrac{1}{3+2}+\dfrac{1}{3^2-4}\right)=\dfrac{1}{5}+\dfrac{1}{5}=\dfrac{2}{5}\)

b: Ta có: P=AB

\(=\left(\dfrac{1}{x+2}+\dfrac{1}{x^2-4}\right)\cdot\dfrac{x^2+2x}{x-1}\)

\(=\dfrac{x-2+1}{\left(x+2\right)\left(x-2\right)}\cdot\dfrac{x\left(x+2\right)}{x-1}\)

\(=\dfrac{x-1}{x-2}\cdot\dfrac{x}{x-1}\)

\(=\dfrac{x}{x-2}\)

c: Để \(P=\dfrac{2}{3}\) thì \(\dfrac{x}{x-2}=\dfrac{2}{3}\)

\(\Leftrightarrow3x=2x-4\)

hay x=-4(nhận)

\(x^2+4x+3=x^2+3x+x+3=\left(x^2+3x\right)+\left(x+3\right)=x\left(x+3\right)+\left(x+3\right)=\left(x+3\right)\left(x+1\right)\)

2 tháng 1 2023

m.n giúp mk câu này vs ạ 

(\(\dfrac{x+2}{x-2}-\dfrac{x-2}{x+2}+\dfrac{16}{4-x^2}\)) : (\(\dfrac{4}{2-x}-\dfrac{8}{2x-x^2}\))

28 tháng 8 2021

a) Ta có:

 \(H=\left(\dfrac{x}{x^2-4}+\dfrac{1}{x+2}+\dfrac{2}{2-x}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\\ =\left(\dfrac{x}{x^2-4}+\dfrac{x-2}{x^2-4}-\dfrac{2\left(x+2\right)}{x^2-4}\right):\left(\dfrac{x^2-4+10-x^2}{x+2}\right)\\ =\dfrac{x+x-2-2x-4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{6}\\ =\dfrac{-6}{x-2}\cdot\dfrac{1}{6}=\dfrac{1}{2-x}\)

b) Để H < 0 thì \(\dfrac{1}{2-x}\) < 0 hay 2 - x < 0 ( do 1 > 0) suy ra x > 2

Vậy với x > 2 thì H < 0.

c) Ta có:

\(\left|x\right|=3\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

+) Với x = 3 thì:

H = \(\dfrac{1}{2-3}=-1\)

+) Với x = -3 thì:

\(H=\dfrac{1}{2-\left(-3\right)}=\dfrac{1}{5}\)

Vậy với |x| = 3 thì H = -1 hoặc H = 1/5

a: Ta có: \(H=\left(\dfrac{x}{x^2-4}+\dfrac{1}{x+2}+\dfrac{2}{2-x}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\)

\(=\dfrac{x+x-2-2x-4}{\left(x-2\right)\left(x+2\right)}:\dfrac{x^2-4+10-x^2}{x+2}\)

\(=\dfrac{-6}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{6}\)

\(=\dfrac{-1}{x-2}\)

b: Để H<0 thì x-2<0

hay x<2

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}x< 2\\x\ne-2\end{matrix}\right.\)

18 tháng 1 2018

bn lên google tra

18 tháng 1 2018

mk tra dồi nhưng không có

AH
Akai Haruma
Giáo viên
28 tháng 8 2021

Lời giải:

a.

\(G=\frac{x^2-4}{x+1}+\frac{2}{x+1}:\frac{(2x-3)(x+1)-(2x+1)(x-1)}{(x-1)(x+1)}\)

\(=\frac{x^2-4}{x+1}+\frac{2}{x+1}:\frac{-2}{(x-1)(x+1)}=\frac{x^2-4}{x+1}+\frac{2}{x+1}.\frac{(x+1)(x-1)}{-2}\)

\(=\frac{x^2-4}{x+1}-(x-1)=\frac{x^2-4-(x^2-1)}{x+1}=\frac{-3}{x+1}\)

b.

Để $A\in\mathbb{Z}^+$ thì $x+1$ là ước âm của $-3$

$\Rightarrow x+1\in\left\{-1;-3\right\}$

$\Leftrightarrow x\in\left\{-2;-4\right\}$ (tm)

c.

$G< -1\Leftrightarrow \frac{-3}{x+1}+1< 0$

$\Leftrightarrow \frac{x-2}{x+1}< 0$

$\Leftrightarrow x-2<0< x+1$ hoặc $x-2>0>x+1$

$\Leftrightarrow -1< x< 2$ (chọn) hoặc $-1> x>2$ (loại)

Vậy $-1< x< 2$ và $x\neq 1$

 

 

 

Bài 8:

a: Ta có: \(G=\dfrac{x^2-4}{x+1}+\dfrac{2}{x+1}:\left(\dfrac{2x-3}{x-1}-\dfrac{2x+1}{x+1}\right)\)

\(=\dfrac{x^2-4}{x+1}+\dfrac{2}{x+1}:\dfrac{2x^2+2x-3x-3-2x^2+2x-x+1}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{\left(x-2\right)\left(x+2\right)}{x+1}+\dfrac{2}{x+1}\cdot\dfrac{\left(x-1\right)\left(x+1\right)}{-2}\)

\(=\dfrac{\left(x-2\right)\left(x+2\right)}{x+1}+\dfrac{-x+1}{1}\)

\(=\dfrac{x^2-4-\left(x-1\right)\left(x+1\right)}{x+1}\)

\(=\dfrac{x^2-4-x^2+1}{x+1}\)

\(=-\dfrac{3}{x+1}\)

a: Ta có: \(K=\left(\dfrac{2+x}{2-x}+\dfrac{x}{2+x}-\dfrac{4x^2+2x+4}{x^2-4}\right):\left(\dfrac{x^2+9}{x^2-2x}-\dfrac{2x}{x-2}\right)\)

\(=\dfrac{-x^2-4x-4+x^2-2x-4x^2-2x-4}{\left(x-2\right)\left(x+2\right)}:\dfrac{x^2+9-2x^2}{x\left(x-2\right)}\)

\(=\dfrac{-4x^2-8x-8}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x\left(x-2\right)}{-x^2+9}\)

\(=\dfrac{-4\left(x^2+2x+1\right)}{x+2}\cdot\dfrac{x}{-\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{-4x\left(x+1\right)^2}{-\left(x-3\right)\left(x+3\right)\left(x+2\right)}\)

27 tháng 8 2021

a) \(D=\left(\dfrac{2}{x+2}-\dfrac{4}{x^2+4x+4}\right):\left(\dfrac{2}{x^2-4}+\dfrac{1}{2-x}\right)\)\(=\left(\dfrac{2}{x+2}-\dfrac{4}{\left(x+2\right)^2}\right):\left(\dfrac{2}{\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x-2}\right)\)

\(=\left(\dfrac{2\left(x+2\right)}{\left(x+2\right)^2}-\dfrac{4}{\left(x+2\right)^2}\right):\left(\dfrac{2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}\right)\)

\(=\dfrac{2\left(x+2\right)-4}{\left(x+2\right)^2}:\dfrac{2-x-2}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{2x+4-4}{\left(x+2\right)^2}:\dfrac{-x}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{2x}{\left(x+2\right)^2}.\dfrac{\left(x-2\right)\left(x+2\right)}{-x}\)

\(=\dfrac{-2.\left(x-2\right)}{x+2}\)

\(x^2-5x+6=0\\ \Rightarrow\left(x^2-2x\right)-\left(3x-6\right)=0\\ \Rightarrow\left(x-2\right)\left(x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

\(P=\dfrac{-2.\left(x-2\right)}{x+2}\)

Thay \(x=2\), ta có:

\(P=\dfrac{-2.\left(2-2\right)}{2+2}\)

    \(=0\)

Thay \(x=3\), ta có:

\(P=\dfrac{-2.\left(3-2\right)}{3+2}\)

    \(=-\dfrac{2}{5}\)

 

27 tháng 8 2021

Là D kìa, lần sau ghi các câu nhỏ để dễ thấy, với cả còn câu c kìa.

NV
15 tháng 6 2019

\(f\left(x\right)\) chia \(x+2\)\(10\Rightarrow f\left(-2\right)=10\)

\(f\left(x\right)\) chia \(x-2\)\(24\Rightarrow f\left(2\right)=24\)

\(f\left(x\right)\) chia \(x^2-4\) sẽ có số dư cao nhất là đa thức bậc 1

\(\Rightarrow f\left(x\right)=\left(x^2-4\right).\left(-5x\right)+ax+b\) (1)

Lần lượt thay \(x=2\)\(x=-2\) vào (1):

\(\left\{{}\begin{matrix}24=2a+b\\10=-2a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{7}{2}\\b=17\end{matrix}\right.\)

\(\Rightarrow f\left(x\right)=-5x\left(x^2-4\right)+\frac{7}{2}x+17=-5x^3+\frac{47}{2}x+17\)