Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cau 1:
Đkxđ: 2x-4\(\ge\)0
(ngoặc nhọn) 3-x> 0
khi và chỉ khi : x\(\ge\)2 và x<3
Ta có: \(\left\{{}\begin{matrix}\overrightarrow{a}=m\overrightarrow{u}+\overrightarrow{v}=\left(4m+1;m+4\right)\\\overrightarrow{b}=\overrightarrow{i}+\overrightarrow{j}=\left(1;1\right)\end{matrix}\right.\)
Yêu cầu bài toán <=> cos\(\left(\overrightarrow{a};\overrightarrow{b}\right)\)=cos45o =\(\dfrac{\sqrt{2}}{2}\)
<=> \(\dfrac{\left(4m+1\right)+\left(m+4\right)}{\sqrt{2}\sqrt{\left(4m+1\right)^2+\left(m+4\right)^2}}=\dfrac{\sqrt{2}}{2}\)
<=> \(\dfrac{5\left(m+1\right)}{\sqrt{2}\sqrt{17m^2+16+17}}=\dfrac{\sqrt{2}}{2}\)
<=> \(5\left(m+1\right)=\sqrt{17m^2+16m+17}\) <=>\(\left\{{}\begin{matrix}m+1\ge0\\25m^2+50m+25=17m^2+16m+17\end{matrix}\right.\)
<=> m=\(-\dfrac{1}{4}\)
b) \(\dfrac{3\pi}{2}< \alpha< 2\pi\)\(\Rightarrow cos\alpha>0;sin\alpha< 0\)
Có \(1+tan^2\alpha=\dfrac{1}{cos^2\alpha}\)\(\Rightarrow cos\alpha=\dfrac{4}{5}\)
\(sin\alpha=-\sqrt{1-cos^2\alpha}=-\dfrac{3}{5}\)
\(sin\left(\alpha-\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}\left(sin\alpha-cos\alpha\right)=\dfrac{\sqrt{2}}{2}\left(-\dfrac{3}{5}-\dfrac{4}{5}\right)=-\dfrac{7\sqrt{2}}{10}\)
Bài 2:
a) Gọi đt d vuông góc với đường thẳng \(\Delta\)có dạng: \(d:-4x+3y+c=0\)
\(A\in\left(d\right)\Rightarrow-4+3+c=0\Leftrightarrow c=1\)
Vậy \(d:-4x+3y+1=0\)
b) Gọi pt đường tròn (C) tâm A có dạng \(\left(C\right):\left(x-1\right)^2+\left(y-1\right)^2=R^2\)
Vì (C) tiếp xúc với \(\Delta\)
\(\Rightarrow\)\(R=d_{\left(A;\Delta\right)}=\dfrac{\left|3+4+5\right|}{\sqrt{3^2+4^2}}=\dfrac{12}{5}\)
\(\Rightarrow\left(C\right):\left(x-1\right)^2+\left(y-1\right)^2=\dfrac{144}{25}\)
Vậy...
Câu 1: Vì (d') vuông góc với (d) nên \(a\cdot\dfrac{-1}{3}=-1\)
hay a=3
Vậy: (d'): y=3x+b
Thay x=4 và y=-5 vào (d'), ta được:
b+12=-5
hay b=-17
a: \(\left|\overrightarrow{AB}-\overrightarrow{AC}\right|=\left|\overrightarrow{CB}\right|=10a\)
b: \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=\dfrac{BC}{2}=5a\)
\(\left|1-2x\right|< 5-x\)
\(\Leftrightarrow-\left(5-x\right)< 1-2x< 5-x\)
\(\Leftrightarrow x-5< 1-2x< 5-x\)
\(\Leftrightarrow-4< x< 2\)
Em cũng bị sau đó thì tìm zalo cô giáo để gửi bài thui nè
Đặt \(m=a^2,n=b^2\)
Ta đưa bài toán về dạng tìm GTLN và GTNN của \(A=m-3mn+2n\)
Khi đó ta suy ra từ giả thiết :
\(\left(m+n+1\right)^2+3mn+1=4m+5n\)
\(\Rightarrow m-3mn+2n=\left(m+n+1\right)^2+1-3m-3n\)
\(=\left(m^2+n^2+2mn+2m+2n+1\right)+1-3n-3m\)
\(=m^2+n^2+2mn-m-n+2\)
\(=m^2+m\left(2n-1\right)+n^2-n+2\)
\(=m^2+m\left(2n-1\right)+\frac{\left(2n-1\right)^2}{4}+\frac{7}{4}\)
\(=\left(m+\frac{2n-1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)
Hay \(A\ge\frac{7}{4}\) . Đẳng thức xảy ra khi \(m=\frac{1-2n}{2}\)
Tới đây bạn tự suy ra nhé ^^